試卷征集
加入會員
操作視頻

已知拋物線y=ax2+bx+6(a為常數(shù),a≠0)交x軸于點A(6,0)和點B(-1,0),交y軸于點C.
(Ⅰ)求點C的坐標和拋物線的解析式;
(Ⅱ)P是拋物線上位于直線AC上方的動點,過點P作y軸的平行線,交直線AC于點D,當PD取得最大值時,求點P的坐標;
(Ⅲ)M是拋物線的對稱軸l上一點,N為拋物線上一點,當直線AC垂直平分△AMN的邊MN時,求點N的坐標.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:468引用:6難度:0.2
相似題
  • 1.如圖,已知拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于C(0,3),DE所在的直線是該拋物線的對稱軸.

    (1)求拋物線的解析式及頂點D的坐標;
    (2)連接AD,P是AD上的動點,P′是點P關于DE的對稱點,連接PE,過點P′作P′F∥PE,交x軸于點F,設四邊形PP′FE的面積為y,EF=x,求y與x之間的函數(shù)關系式.

    發(fā)布:2025/6/16 2:0:1組卷:231引用:2難度:0.3
  • 2.如圖,拋物線y=ax2+bx+c與x軸交于原點O和點A,且其頂點B關于x軸的對稱點坐標為(2,1).
    (1)求拋物線的函數(shù)表達式;
    (2)拋物線的對稱軸上存在定點F,使得拋物線y=ax2+bx+c上的任意一點G到定點F的距離與點G到直線y=-2的距離總相等.
    ①證明上述結論并求出點F的坐標;
    ②過點F的直線l與拋物線y=ax2+bx+c交于M,N兩點.
    證明:當直線l繞點F旋轉時,
    1
    MF
    +
    1
    NF
    是定值,并求出該定值;
    (3)點C(3,m)是該拋物線上的一點,在x軸,y軸上分別找點P,Q,使四邊形PQBC周長最小,直接寫出P,Q的坐標.

    發(fā)布:2025/6/16 5:0:1組卷:2172引用:5難度:0.4
  • 3.如圖,已知拋物線y=ax2+bx+5經(jīng)過A(-5,0),B(-4,-3)兩點,與x軸的另一個交點為C,頂點為D,連接BD,CD.
    (1)求該拋物線的表達式;
    (2)判斷△BCD的形狀,并說明理由;
    (3)若點P為該拋物線上一動點(與點B、C不重合),該拋物線上是否存在點P,使得∠PBC=∠BCD?若存在,請直接寫出滿足條件的所有點P的坐標;若不存在,請說明理由.

    發(fā)布:2025/6/16 5:30:3組卷:1379引用:2難度:0.1
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正