俄國數(shù)學家切比雪夫是研究直線逼近函數(shù)理論的先驅.對定義在非空集合I上的函數(shù)f(x),以及函數(shù)g(x)=kx+b(k,b∈R),切比雪夫將函數(shù)y=|f(x)-g(x)|,x∈I的最大值稱為函數(shù)f(x)與g(x)的“偏差”.
(1)若f(x)=x2(x∈[0,1]),g(x)=-x-1,求函數(shù)f(x)與g(x)的“偏差”;
(2)若f(x)=x2(x∈[-1,1]),g(x)=x+b,求實數(shù)b,使得函數(shù)f(x)與g(x)的“偏差”取得最小值,并求出“偏差”的最小值.
【考點】函數(shù)的最值.
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:204引用:4難度:0.3
相似題
-
1.函數(shù)f(x)=
x3-4x+m在[0,3]上的最小值為4,則m的值為( )13發(fā)布:2024/12/29 3:0:1組卷:109引用:4難度:0.9 -
2.已知函數(shù)f(x)=loga(1-x)+loga(3+x)(a>0且a≠1)在定義域內存在最大值,且最大值為2,g(x)=
,若對任意x1∈[-1,m?2x-12x],存在x2∈[-1,1],使得f(x1)≥g(x2),則實數(shù)m的取值可以是( )12發(fā)布:2024/12/29 13:30:1組卷:133引用:2難度:0.5 -
3.已知f(x)=|lnx|,x1,x2是方程f(x)=a(a∈R)的兩根,且x1<x2,則
的最大值是 .ax1x22發(fā)布:2024/12/29 13:30:1組卷:120引用:4難度:0.5
把好題分享給你的好友吧~~