【學習心得】
(1)小雯同學在學習完“圓”這一章內容后,感覺到一些幾何問題如果添加輔助圓,運用圓的知識解決,可以使問題變得非常容易.例如:如圖1,在△ABC中,AB=AC,∠BAC=90°,D是△ABC外一點,且AD=AC,求∠BDC的度數(shù).若以點A為圓心,AB長為半徑作輔助圓⊙A,則C,D兩點必在⊙A上,∠BAC是⊙A的圓心角,∠BDC是⊙A的圓周角,則∠BDC=45°45°.
【初步運用】
(2)如圖2,在四邊形ABCD中,∠BAD=∠BCD=90°,∠BDC=23°,求∠BAC的度數(shù);
【方法遷移】
(3)如圖3,已知線段AB和直線l,用直尺和圓規(guī)在1上作出所有的點P,使得∠APB=30°(不寫作法,保留作圖痕跡);
【問題拓展】
(4)①如圖4①,已知矩形ABCD,AB=2,BC=m,M為邊CD上的點.若滿足∠AMB=45°的點M恰好有兩個,則m的取值范圍為 2≤m<2+12≤m<2+1,②如圖4②,在△ABC中,∠BAC=45°,AD是BC邊上的高,且BD=6,CD=2,求AD的長.
2
+
1
2
+
1
【考點】圓的綜合題.
【答案】45°;2≤m<
2
+
1
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/15 3:0:8組卷:463引用:2難度:0.2
相似題
-
1.如圖,△ABC為⊙O的內接三角形,P為BC延長線上一點,∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.
(1)判斷直線PA與⊙O的位置關系,并說明理由;
(2)求證:AG2=AF?AB;
(3)若⊙O的直徑為10,AC=2,AB=45,求△AFG的面積.5發(fā)布:2025/6/6 17:0:1組卷:1963引用:8難度:0.1 -
2.如圖,AB為⊙O的直徑,C為⊙O上一點,連接AC,BC,D為AB延長線上一點,連接CD,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為2,△ABC的面積為2,求CD的長;3
(3)在(2)的條件下,求線段CD、線段BD和弧BC所圍成的圖形的面積S.發(fā)布:2025/6/6 17:30:2組卷:66引用:1難度:0.3 -
3.如圖,AB是⊙O的直徑,點C是圓上的一點,CD⊥AD于點D,AD交⊙O于點F,連接AC,若AC平分∠DAB,過點F作FG⊥AB于點G交AC于點H.
(1)求證:CD是⊙O的切線;
(2)延長AB和DC交于點E,若AE=4BE,求cos∠DAB的值;
(3)在(2)的條件下,求的值.FHAF發(fā)布:2025/6/6 0:0:1組卷:2203引用:10難度:0.3