已知橢圓E:x2a2+y2b2=1(a>b>0)的離心率為33,橢圓E的長軸長為26.
(1)求橢圓E的標準方程;
(2)設(shè)A(0,-1),B(0,2),過A且斜率為k1的動直線l與橢圓E交于M,N兩點,
直線BM,BN分別交⊙C:x2+(y-1)2=1于異于點B的點P,Q,設(shè)直線PQ的斜率為k2,直線BM,BN的斜率分別為k3,k4.
①求證:k3?k4為定值;
②求證:直線PQ過定點.
x
2
a
2
+
y
2
b
2
=
1
(
a
>
b
>
0
)
3
3
6
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/26 17:0:2組卷:164引用:2難度:0.2
相似題
-
1.已知橢圓C:
=1(a>b>0)的一個頂點坐標為A(0,-1),離心率為x2a2+y2b2.32
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線y=k(x-1)(k≠0)與橢圓C交于不同的兩點P,Q,線段PQ的中點為M,點B(1,0),求證:點M不在以AB為直徑的圓上.發(fā)布:2024/12/29 12:30:1組卷:362引用:4難度:0.5 -
2.設(shè)橢圓
+x2a2=1(a>b>0)的右頂點為A,上頂點為B.已知橢圓的離心率為y2b2,|AB|=53.13
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線l:y=kx(k<0)與橢圓交于P,Q兩點,直線l與直線AB交于點M,且點P,M均在第四象限.若△BPM的面積是△BPQ面積的2倍,求k的值.發(fā)布:2024/12/29 12:30:1組卷:4422引用:26難度:0.3 -
3.如果橢圓
的弦被點(4,2)平分,則這條弦所在的直線方程是( ?。?/h2>x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:454引用:3難度:0.6
把好題分享給你的好友吧~~