記函數(shù)y=x2-2x(x≤2)的圖象為G1,函數(shù)y=-12x2+2(x>0)的圖象記為G2,圖象G1和G2記為圖象G.
(1)若點(3,m)在圖象G上,求m的值.
(2)已知直線l與x軸平行,且與圖象G有三個交點,從左至右依次為點A,點B,點C,若AB=1,求點C坐標.
(3)若當-1≤x≤n時,-1≤y≤3,求n的取值范圍.
y
=
-
1
2
x
2
+
2
(
x
>
0
)
【考點】二次函數(shù)綜合題.
【答案】(1);
(2);
(3)1≤n≤.
-
5
2
(2)
(
22
2
,-
3
4
)
(3)1≤n≤
6
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:350引用:1難度:0.4
相似題
-
1.如圖:直線y=kx+m交y軸于點D,交x軸于點C(5,0),交拋物線y=ax2+bx+8于點A(-3,4),點E,點B(2,4)在拋物線上,連接AB,BC,BD.
(1)求拋物線的解析式;
(2)點Q從點A出發(fā),以每秒2個單位長度的速度沿折線A-B-C做勻速運動,當點Q與點C重合時停止運動,設運動的時間為t秒,△QBD的面積為S,求S與t的函數(shù)關系式;
(3)在(2)的條件下,若∠DQB+∠BCO=90°,請直接寫出此時t的值.發(fā)布:2025/5/25 7:0:2組卷:168引用:1難度:0.4 -
2.如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(ac≠0)與x軸交于點A和點B(點A在點B的左側),與y軸交于點C.若線段OA、OB、OC的長滿足OC2=OA?OB,則這樣的拋物線稱為“黃金”拋物線.如圖,拋物線y=ax2+bx+2(a≠0)為“黃金”拋物線,其與x軸交點為A,B(其中B在A的右側),與y軸交于點C,且OA=4OB.
(1)求拋物線的解析式;
(2)若P為AC上方拋物線上的動點,過點P作PD⊥AC,垂足為D.
①求PD的最大值;
②連接PC,當△PCD與△ACO相似時,求點P的坐標.發(fā)布:2025/5/25 7:0:2組卷:1125引用:11難度:0.1 -
3.如圖,拋物線y=ax2+bx+2經(jīng)過A(-1,0)、B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及直線BC解析式;
(2)D是直線BC上方拋物線上一動點,連接AD交線段BC于點E,當的值最大時,求出此時D坐標及最大值;DEAE
(3)將直線BC繞點B順時針旋轉45°,得到BF,與拋物線交于另一點F,直接寫出F坐標及BF的長.發(fā)布:2025/5/25 7:0:2組卷:171引用:2難度:0.1