數(shù)學(xué)課上,小白遇到這樣一個(gè)問題:
如圖1,在等腰Rt△ABC中,∠BAC=90°,AB=AC,AD=AE,求證∠ABE=∠ACD;在此問題的基礎(chǔ)上,老師補(bǔ)充:過點(diǎn)A作AF⊥BE于點(diǎn)G,交BC于點(diǎn)F,過F作FP⊥CD交BE于點(diǎn)P,交CD于點(diǎn)H,試探究線段BP,F(xiàn)P,AF之間的數(shù)量關(guān)系,并說明理由.小白通過研究發(fā)現(xiàn),∠AFB與∠HFC有某種數(shù)量關(guān)系:小明通過研究發(fā)現(xiàn),將三條線段中的兩條放到同一條直線上,即截長(zhǎng)補(bǔ)短,再通過進(jìn)一步推理,可以得出結(jié)論.閱讀上面材料,請(qǐng)回答下面問題:
(1)求證∠ABE=∠ACD;
(2)猜想∠AFB與∠HFC的數(shù)量關(guān)系,并證明;
(3)探究線段BP,F(xiàn)P,AF之間的數(shù)量關(guān)系,并證明.

【考點(diǎn)】三角形綜合題.
【答案】(1)證明見解答過程;
(2)∠HFC=∠BFA,證明見解答過程;
(3)BP=AF+PF,證明見解答過程.
(2)∠HFC=∠BFA,證明見解答過程;
(3)BP=AF+PF,證明見解答過程.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:536引用:1難度:0.3
相似題
-
1.已知在平面直角坐標(biāo)系中,點(diǎn)A(a,b)滿足
=0,AB⊥x軸于點(diǎn)B.12a-3+(2-b)2
(1)點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為;
(2)如圖1,若點(diǎn)M在x軸上,連接MA,使S△ABM=2,求出點(diǎn)M的坐標(biāo);
(3)如圖2,P是線段AB所在直線上一動(dòng)點(diǎn),連接OP,OE平分∠PON,交直線AB于點(diǎn)E,作OF⊥OE,當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)過程中,請(qǐng)?zhí)骄俊螼PE與∠FOP的數(shù)量關(guān)系,并證明.發(fā)布:2025/6/7 7:0:1組卷:642引用:7難度:0.3 -
2.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足
+|b-8|=0.a-6
(1)a=;b=.
(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P,Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)O勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速移動(dòng),點(diǎn)P到達(dá)O點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(4,3),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
(3)在(2)的條件下,若∠DOC=∠DCO,點(diǎn)G是第二象限中一點(diǎn),并且y軸平分∠GOD.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連接CE交OD于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論.發(fā)布:2025/6/7 7:30:1組卷:146引用:1難度:0.1 -
3.如圖1,在△ABC中,BO⊥AC于點(diǎn)O,AO=BO=3,OC=1,過點(diǎn)A作AH⊥BC于點(diǎn)H,交BO于點(diǎn)P.
(1)求線段OP的長(zhǎng)度;
(2)連接OH,求∠AHO的度數(shù);
(3)如圖2,若點(diǎn)D為AB的中點(diǎn),點(diǎn)M為線段BO延長(zhǎng)線上一動(dòng)點(diǎn),連接MD,過點(diǎn)D作DN⊥DM交線段OA延長(zhǎng)線于N點(diǎn),則S△BDM-S△ADN的值是否發(fā)生改變,如改變,求出該值的變化范圍;若不改變,求該式子的值.發(fā)布:2025/6/7 5:30:3組卷:341引用:3難度:0.1