在Rt△ABC中,∠ABC=90°,AB=BC,點E在射線CB上運動.連接AE,將線段AE繞點E順時針旋轉(zhuǎn)90°得到EF,連接CF.

(1)如圖1,點E在點B的左側(cè)運動.
①當(dāng)BE=1,BC=3時,則∠EAB=3030°;
②猜想線段CA,CF與CE之間的數(shù)量關(guān)系為 CA+CF=2CECA+CF=2CE.
(2)如圖2,點E在線段CB上運動時,第(1)問中線段CA,CF與CE之間的數(shù)量關(guān)系是否仍然成立?如果成立,請說明理由;如果不成立,請求出它們之間新的數(shù)量關(guān)系.
(3)點E在射線CB上運動,BC=3,設(shè)BE=x,以A,E,C,F(xiàn)為頂點的四邊形面積為y,請直接寫出y與x之間的函數(shù)關(guān)系式(不用寫出x的取值范圍).
3
2
2
3
【考點】幾何變換綜合題.
【答案】30;CA+CF=CE
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:634引用:5難度:0.4
相似題
-
1.閱讀下面的材料,并解決問題:
(1)如圖1,等邊△ABC內(nèi)有一點P,若點P到頂點A、B、C的距離分別是3、4、5,求∠APB的度數(shù).由于PA、PB、PC不在一個三角形中,為了解決本題我們可以將△ABP繞頂點A旋轉(zhuǎn)到△ACP′處,此時△ACP≌.這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù);(求∠APB的度數(shù))
(2)請你利用第(1)題解答的思想方法,解答下面的問題:如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點且∠EAF=45°,求證:EF2=BE2+FC2.發(fā)布:2025/6/9 5:30:2組卷:189引用:2難度:0.2 -
2.(1)如圖1,在平面直角坐標(biāo)系中,將直角三角形的直角頂點放在點P(2,2)處,若A(0,2),則B的坐標(biāo)為 ;
(2)將直角三角形繞點P逆時針旋轉(zhuǎn),如圖2,兩直角邊與坐標(biāo)軸分別交于點AB,求OA+OB的值;
(3)將直角三角形繞點P逆時針旋轉(zhuǎn),如圖3,兩直角邊所在的直線與坐標(biāo)軸交于A,B兩點,探究OB與OA的數(shù)量關(guān)系.發(fā)布:2025/6/9 5:0:1組卷:40引用:1難度:0.2 -
3.如圖1,在△ABC中,AE⊥BC于點E,AE=BE,D是AE上的一點,且DE=CE,連接BD,CD.
(1)試判斷BD與AC的位置關(guān)系是:;數(shù)量關(guān)系是:;
(2)如圖2,若將△DCE繞點E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數(shù)量關(guān)系為:;
②你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.發(fā)布:2025/6/9 6:30:1組卷:724引用:2難度:0.3