試卷征集
加入會員
操作視頻

已知a>0且a≠1,函數(shù)f(x)=
a
x
-
a
-
x
a
x
+
a
-
x
+b在R上是單調(diào)減函數(shù),且滿足下列三個條件中的兩個.
①函數(shù)f(x)為奇函數(shù);②f(1)=-
3
5
;③f(-1)=-
3
5

(Ⅰ)從中選擇的兩個條件的序號為
①②
①②
,依所選擇的條件求得b=
0
0
,a=
1
2
1
2
;
(Ⅱ)利用單調(diào)性定義證明函數(shù)g(t)=
2
t
-t在(0,+∞)上單調(diào)遞減;
(Ⅲ)在(Ⅰ)的情況下,若方程f(x)=m+4x在[0,1]上有且只有一個實(shí)根,求實(shí)數(shù)m的取值范圍.

【考點(diǎn)】函數(shù)的奇偶性
【答案】①②;0;
1
2
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:445引用:1難度:0.4
相似題
  • 1.設(shè)函數(shù)
    f
    x
    =
    x
    +
    1
    x
    +
    a
    x
    為奇函數(shù),則實(shí)數(shù)a的值為( ?。?/h2>

    發(fā)布:2024/12/29 13:0:1組卷:804引用:4難度:0.5
  • 2.已知f(x)是定義在R上的奇函數(shù),f(x)的圖象關(guān)于x=1對稱,當(dāng)x∈(0,1]時,f(x)=ex-1,則下列判斷正確的是( ?。?/h2>

    發(fā)布:2024/12/29 2:0:1組卷:266引用:5難度:0.5
  • 3.定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),則f(2022)=( ?。?/h2>

    發(fā)布:2025/1/4 5:0:3組卷:180引用:1難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正