已知二次函數(shù)y=f(x)的圖象的頂點(diǎn)坐標(biāo)為(-1,-13),且過坐標(biāo)原點(diǎn)O,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)在二次函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的表達(dá)式;
(2)設(shè)bn=an?an+1cos(n+1)π(n∈N*),數(shù)列{bn}的前n項(xiàng)和為Tn,若Tn≥tn2對(duì)n∈N*恒成立,求實(shí)數(shù)t的取值范圍;
(3)在數(shù)列{an}中是否存在這樣的一些項(xiàng),an1,an2,an3,…ank,…(1=n1<n2<n3<…<nk<…k∈N*),這些項(xiàng)能夠依次構(gòu)成以a1為首項(xiàng),q(0<q<5,q∈N*)為公比的等比數(shù)列{ank}?若存在,寫出nk關(guān)于k的表達(dá)式;若不存在,說明理由.
(
-
1
,-
1
3
)
a
n
1
a
n
2
a
n
3
a
n
k
a
n
k
【考點(diǎn)】數(shù)列的求和;數(shù)列遞推式.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:107引用:4難度:0.1
相似題
-
1.十九世紀(jì)下半葉集合論的創(chuàng)立奠定了現(xiàn)代數(shù)學(xué)的基礎(chǔ).著名的“康托三分集”是數(shù)學(xué)理性思維的構(gòu)造產(chǎn)物,具有典型的分形特征其操作過程如下:將閉區(qū)間[0,1]均分為三段,去掉中間的區(qū)間段(
,13),記為第一次操作;再將剩下的兩個(gè)區(qū)[0,23],[13,1]分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個(gè)區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進(jìn)行下去,以至無窮,剩下的區(qū)間集合即是“康托三分集”.若使去掉的各區(qū)間長(zhǎng)度之和不小于23,則需要操作的次數(shù)n的最小值為( ?。▍⒖紨?shù)據(jù):lg2=0.3010,lg3=0.4771)910發(fā)布:2024/12/29 13:30:1組卷:141引用:17難度:0.6 -
2.設(shè)數(shù)列{an}的前n項(xiàng)和是Sn,令
,稱Tn為數(shù)列a1,a2,…,an的“超越數(shù)”,已知數(shù)列a1,a2,…,a504的“超越數(shù)”為2020,則數(shù)列5,a1,a2,…,a504的“超越數(shù)”為( ?。?/h2>Tn=S1+S2+?+Snn發(fā)布:2024/12/29 9:0:1組卷:126引用:3難度:0.5 -
3.定義
為n個(gè)正數(shù)p1,p2,…,pn的“均倒數(shù)”.若已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”np1+p2+…+pn,又bn=13n+1,則an+26+1b1b2+…+1b2b3=( ?。?/h2>1b9b10發(fā)布:2024/12/29 11:30:2組卷:107引用:1難度:0.7
把好題分享給你的好友吧~~