如圖,正方形ABCD中,點P是邊CD上的一點(不與點C、D重合),連接BP,∠PBC=α,O為BP的中點,過點P作PE⊥BD于E,連接EO,AE.
(1)依題意補全圖形;
(2)求∠POE的大?。ㄓ煤琣的式子表示);
(3)用等式表示線段AE與BP之間的數(shù)量關(guān)系,并證明.
【考點】四邊形綜合題.
【答案】(1)見解析;
(2)∴∠POE=90°-2α;
(3)PB=AE,證明見解析.
(2)∴∠POE=90°-2α;
(3)PB=
2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:314引用:3難度:0.6
相似題
-
1.如圖,四邊形ABCD中,已知∠BAC=∠BDC=90°,且AB=AC.
(1)求證:∠ABD=∠ACD;
(2)記△ABD的面積為S1,△ACD的面積為S2.
①求證:S1-S2=AD2;12
②過點B作BC的垂線,過點A作BC的平行線,兩直線相交于M,延長BD至P,使得DP=CD,連接MP.當(dāng)MP取得最大值時,求∠CBD的大?。?/h2>發(fā)布:2025/6/8 23:0:1組卷:308引用:4難度:0.1 -
2.(1)如圖1,在四邊形ABCD中,∠B=∠C=90°,點E是邊BC上一點,AB=EC,BE=CD,連接AE、DE.判斷△AED的形狀,并說明理由;
(2)在平面直角坐標(biāo)系中,已知點A(2,0),點B(5,1),點C在第一象限內(nèi),若△ABC是等腰直角三角形,求點C的坐標(biāo);
(3)如圖2,在平面直角坐標(biāo)系中,已知點A(0,1),點C是x軸上的動點,線段CA繞著點C按順時針方向旋轉(zhuǎn)90°至線段CB,連接BO、BA,則BO+BA的最小值是 .發(fā)布:2025/6/8 23:30:1組卷:886引用:3難度:0.3 -
3.如圖,正方形ABCD中,AE=BF.
(1)求證:△BCE≌△CDF;
(2)求證:CE⊥DF;
(3)若CD=6,且DG2+GE2=41,則BE=.發(fā)布:2025/6/8 23:30:1組卷:360引用:3難度:0.6