如圖1,二次函數(shù)y=ax2-2x+c(a≠0)的圖象交x軸于點A(-1,0)、B(3,0)兩點,與y軸交于點C,點D是拋物線的頂點,DH⊥x軸于點H連接AC,BC.
(1)求拋物線的解析式;
(2)如圖2,點P是拋物線第一象限上一點,且滿足△PBC的面積等于△ABC的面積.
①求點P的坐標;②點Q與點C關于直線DH對稱,在x軸上找一點E,使得|EP-EQ|的值最大,求點E坐標以及這個最大值;
(3)如圖3,在(2)問的條件下,設直線PE交y軸于點G,交直線DH于點F,y軸上有一定點M(0,4),點K為PQ的中點,連接MF,先將△MFG沿著直線MF翻折到△MFN,再將拋物線y=ax2-2x+c沿著其對稱軸DH向上平移,得到拋物線y1,使得拋物線y1的圖象剛好過點N,此時拋物線y1交y軸于點T,連接TK.請問在直線PE上是否存在一點Y,使得△TKY是直角三角形?若存在,請直接寫出點Y的坐標;若不存在,請說明理由.
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-2x-3;
(2)①P(4,5);②E(-1,0),|EP-EQ|的最大值為2;
(3)在直線PE上存在點Y,使得△TKY是直角三角形,點Y的坐標為(-,)或(,)或(0,1)或(,).
(2)①P(4,5);②E(-1,0),|EP-EQ|的最大值為2
2
(3)在直線PE上存在點Y,使得△TKY是直角三角形,點Y的坐標為(-
12
575
563
575
75
23
98
23
81
50
131
50
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:42引用:1難度:0.2
相似題
-
1.如圖,已知直線y=kx-6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,-4)為拋物線的頂點,點B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.發(fā)布:2025/6/25 8:30:1組卷:6972引用:21難度:0.1 -
2.給定一個函數(shù),如果這個函數(shù)的圖象上存在一個點,它的橫、縱坐標相等,那么這個點叫做該函數(shù)的不變點.
(1)一次函數(shù)y=3x-2的不變點的坐標為.
(2)二次函數(shù)y=x2-3x+1的兩個不變點分別為點P、Q(P在Q的左側),將點Q繞點P順時針旋轉90°得到點R,求點R的坐標.
(3)已知二次函數(shù)y=ax2+bx-3的兩個不變點的坐標為A(-1,-1)、B(3,3).
①求a、b的值.
②如圖,設拋物線y=ax2+bx-3與線段AB圍成的封閉圖形記作M.點C為一次函數(shù)y=-x+m的不變點,以線段AC為邊向下作正方形ACDE.當D、E兩點中只有一個點在封閉圖形M的內部(不包含邊界)時,求出m的取值范圍.13發(fā)布:2025/6/25 7:30:2組卷:348引用:2難度:0.1 -
3.如圖,已知拋物線經過A(1,0),B(0,3)兩點,對稱軸是直線x=-1.
(1)求拋物線對應的函數(shù)關系式;
(2)動點Q從點O出發(fā),以每秒1個單位長度的速度在線段OA上運動,同時動點M從O點出發(fā)以每秒3個單位長度的速度在線段OB上運動,過點Q作x軸的垂線交線段AB于點N,交拋物線于點P,設運動的時間為t秒.
①當t為何值時,四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請說明理由.發(fā)布:2025/6/25 6:0:1組卷:1079引用:59難度:0.5