計算機考試分理論考試與上機操作考試兩部分進行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”則計算機考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中合格的概率分別為35,34,23;在上機操作考試中合格的概率分別為910,56,78.所有考試是否合格相互之間沒有影響.
(1)甲、乙、丙三人在同一次計算機考試中誰獲得“合格證書”可能性最大?
(2)求這三人計算機考試都獲得“合格證書”的概率;
(3)用ξ表示甲、乙、丙三人在理論考核中合格人數(shù),求ξ的分布列和數(shù)學期望Eξ.
3
5
3
4
2
3
9
10
5
6
7
8
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:30引用:4難度:0.3
相似題
-
1.某市舉行“中學生詩詞大賽”,分初賽和復賽兩個階段進行,規(guī)定:初賽成績大于90分的具有復賽資格,某校有800名學生參加了初賽,所有學生的成績均在區(qū)間(30,150]內(nèi),其頻率分布直方圖如圖.
(Ⅰ)求獲得復賽資格的人數(shù);
(Ⅱ)從初賽得分在區(qū)間(110,150]的參賽者中,利用分層抽樣的方法隨機抽取7人參加學校座談交流,那么從得分在區(qū)間(110,130]與(130,150]各抽取多少人?
(Ⅲ)從(Ⅱ)抽取的7人中,選出3人參加全市座談交流,設X表示得分在區(qū)間(130,150]中參加全市座談交流的人數(shù),求X的分布列及數(shù)學期望E(X).發(fā)布:2024/12/29 13:30:1組卷:126引用:7難度:0.5 -
2.設離散型隨機變量X的分布列如表:
X 1 2 3 4 5 P m 0.1 0.2 n 0.3 發(fā)布:2024/12/29 13:0:1組卷:181引用:5難度:0.5 -
3.從4名男生和2名女生中任選3人參加演講比賽,用X表示所選3人中女生的人數(shù),則E(X)為( ?。?/h2>
發(fā)布:2024/12/29 13:30:1組卷:129引用:6難度:0.7