已知-1≤a≤1,函數(shù)f(x)=ex-12x2-asinx-1,g(x)=f(x)+f(-x).
(Ⅰ)討論函數(shù)g(x)的單調(diào)性.
(Ⅱ)設(shè)f′(x)是f(x)的導(dǎo)數(shù).證明:
(?。ゝ(x)在R上單調(diào)遞增;
(ⅱ)當(dāng)x∈[-π3,π3]時(shí),若|f′(x)|≤M,則|f(x)|≤M.
f
(
x
)
=
e
x
-
1
2
-
π
3
π
3
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/1 9:30:2組卷:94引用:3難度:0.4
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實(shí)數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時(shí),y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5 -
3.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個(gè)極值點(diǎn)x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1
把好題分享給你的好友吧~~