如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)當(dāng)t為何值時,四邊形ACQP的面積最小,最小值是多少?
(3)連接AQ,CP,若AQ⊥CP,求t的值.
【考點】相似形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/1 20:0:8組卷:826引用:3難度:0.1
相似題
-
1.【基礎(chǔ)鞏固】
(1)如圖1,在△ABC中,D為AB上一點,∠ACD=∠B,求證:AC2=AD?AB.
【嘗試應(yīng)用】
(2)如圖2,在平行四邊形ABCD中,E為BC上一點,F(xiàn)為CD延長線上一點,∠BFE=∠A.若BF=5,BE=3,求AD的長.
【拓展提高】
(3)如圖3,在菱形ABCD中,E是AB上一點,F(xiàn)是△ABC內(nèi)一點,EF∥AC,AC=2EF,∠BAD=2∠EDF,AE=1,DF=4,求菱形ABCD的邊長(直接寫出答案).發(fā)布:2025/5/25 17:0:1組卷:480引用:4難度:0.3 -
2.問題提出
如圖(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,點E在△ABC內(nèi)部,直線AD與BE交于點F.線段AF,BF,CF之間存在怎樣的數(shù)量關(guān)系?
問題探究
(1)先將問題特殊化如圖(2),當(dāng)點D,F(xiàn)重合時,直接寫出一個等式,表示AF,BF,CF之間的數(shù)量關(guān)系;
(2)再探究一般情形如圖(1),當(dāng)點D,F(xiàn)不重合時,證明(1)中的結(jié)論仍然成立.
問題拓展
如圖(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常數(shù)),點E在△ABC內(nèi)部,直線AD與BE交于點F.直接寫出一個等式,表示線段AF,BF,CF之間的數(shù)量關(guān)系.發(fā)布:2025/5/25 17:30:1組卷:5696引用:14難度:0.6 -
3.【證明體驗】(1)如圖1,△ABC中,D為BC邊上任意一點,作DE⊥AC于E,若∠CDE=
∠A,求證:△ABC為等腰三角形;12
【嘗試應(yīng)用】
(2)如圖2,四邊形ABCD中,∠D=90°,AD=CD,AE平分∠BAD,∠BCD+∠EAD=180°,若DE=2,AB=6,求AE的長;
【拓展延伸】
(3)如圖3,△ABC中,點D在AB邊上滿足CD=BD,∠ACB=90°+∠B,若AC=1012,BC=20,求AD的長.3發(fā)布:2025/5/25 20:0:1組卷:497引用:1難度:0.3