設函數(shù)f(x)=2x+33x(x>0),數(shù)列{an}滿足a1=1,an=f(1an-1)(n∈N*,且n≥2).
(I)求數(shù)列{an}的通項公式;
(II)設Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,若Tn≥tn2對n∈N*恒成立,求實數(shù)t的取值范圍;
(III)在數(shù)列{an}中是否存在這樣一些項:an1,an2,an3,…,ank,…(1=n1<n2<n3<…<nk<…,k∈N*),這些項能夠構成以a1為首項,q(0<q<5,q∈N*)為公比的等比數(shù)列{ank},k∈N*.若存在,寫出nk關于k的表達式;若不存在,說明理由.
f
(
x
)
=
2
x
+
3
3
x
(
x
>
0
)
a
1
=
1
,
a
n
=
f
(
1
a
n
-
1
)
(
n
∈
N
*
,
且
n
≥
2
)
a
n
1
,
a
n
2
,
a
n
3
,…,
a
n
k
,…
(
1
=
n
1
<
n
2
<
n
3
<
…
<
n
k
<
…,
k
∈
N
*
)
{
a
n
k
}
【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:44引用:2難度:0.1
相似題
-
1.在數(shù)列{an}中,a1=5,an=qan-1+d(n≥2)
(1)數(shù)列{an}有可能是等差數(shù)列或等比數(shù)列嗎?若可能給出一個成立的條件(不必證明);若不可能,請說明理由;
(2)若q=2,d=3,是否存在常數(shù)x,使得數(shù)列{an+x}為等比數(shù)列;
(3)在(2)的條件下,設數(shù)列{an}的前n項和為Sn,求滿足Sn≥2009的最小自然數(shù)n的值.發(fā)布:2025/1/14 8:0:1組卷:8引用:1難度:0.5 -
2.已知{an}是等差數(shù)列,公差d≠0,a1=1,且、a1,a3,a9成等比數(shù)列,則數(shù)列
的前n項和Sn=.{2an}發(fā)布:2024/12/29 7:0:1組卷:69引用:3難度:0.7 -
3.在各項均為正數(shù)的等比數(shù)列{an}中,a1=2,且2a1,a3,3a2成等差數(shù)列.
(Ⅰ) 求等比數(shù)列{an}的通項公式;
(Ⅱ) 若數(shù)列{bn}滿足bn=11-2log2an,求數(shù)列{bn}的前n項和Tn的最大值.發(fā)布:2024/12/29 5:30:3組卷:282引用:13難度:0.5