如圖,二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點A(-1,0),B(3,0),與y軸交于點C.
(1)求二次函數(shù)的解析式;
(2)第一象限內(nèi)的二次函數(shù)y=ax2+bx+3圖象上有一動點P,x軸正半軸上有一點D,且OD=2,當(dāng)S△PCD=3時,求出點P的坐標(biāo);
(3)若點M在第一象限內(nèi)二次函數(shù)圖象上,是否存在以CD為直角邊的Rt△MCD,若存在,求出點M的坐標(biāo),若不存在,請說明理由.

【考點】二次函數(shù)綜合題.
【答案】(1)y=-x2+2x+3;
(2)(2,3)或(,);
(3)存在,(,)或(,).
(2)(2,3)或(
3
2
15
4
(3)存在,(
2
+
43
3
2
43
-
8
9
4
3
35
9
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:187引用:3難度:0.2
相似題
-
1.如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
x2+bx+c經(jīng)過點B,且頂點在直線x=23上.52
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標(biāo);
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作MN∥BD交x軸于點N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標(biāo);若不存在,說明理由.發(fā)布:2025/5/26 2:30:2組卷:851引用:24難度:0.5 -
2.如圖1,二次函數(shù)y=
(x-2)2的圖象記為C1,與y軸交于點A,其頂點為B,二次函數(shù)y=14(x-h)2-14h+1(h>2)的圖象記為C2,其頂點為D,圖象C1、C2相交于點P,設(shè)點P的橫坐標(biāo)為m.12
(1)求證:點D在直線AB上.
(2)求m和h的數(shù)量關(guān)系;
(3)平行于x軸的直線l1經(jīng)過點P與圖象C交于另一點E,與圖象C2交于另一點F,若=2,求h的值.PFPE
(4)如圖2,過點P作平行于AB的直線l2,與圖象C2交于另一點Q,連接DQ,當(dāng)DQ⊥AB時,h=(直接寫出結(jié)果).發(fā)布:2025/5/26 2:30:2組卷:355引用:2難度:0.1 -
3.已知拋物線y=x2-2x+4與y軸相交于點P,拋物線y2=x2+bx+c的頂點為Q.
(1)求點P的坐標(biāo)以及拋物線y的頂點坐標(biāo);
(2)當(dāng)點Q在x軸上時,求b+c的最小值;
(3)若點A(-2,1)、B(-3,4)兩點恰好均在拋物線y2上.
①求點Q的坐標(biāo);
②經(jīng)過點P、Q的直線l上有一點D,過點D作x軸的垂線,分別交函數(shù)y1、y2的圖象于點E、F,若點E在點F下方,且D是線段EF的中點,求點D的坐標(biāo).發(fā)布:2025/5/26 2:30:2組卷:258引用:2難度:0.4
相關(guān)試卷