已知數(shù)列{an}中,Sn是{an}的前n項(xiàng)和,且Sn是2a與-2nan的等差中項(xiàng),其中a是不等于零的常數(shù).
(1)求a1,a2,a3;
(2)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.
【考點(diǎn)】數(shù)學(xué)歸納法.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:76引用:6難度:0.1
相似題
-
1.用數(shù)學(xué)歸納法證明
+1n+1+…+1n+2≥13n,從n=k到n=k+1,不等式左邊需添加的項(xiàng)是( ?。?/h2>56發(fā)布:2024/12/17 12:30:2組卷:394引用:10難度:0.9 -
2.用數(shù)學(xué)歸納法證明
時(shí),在證明n=1等式成立時(shí),此時(shí)等式的左邊是( )1+a+a2+…+a2(n+1)=1-a2n+31-a(a≠1,n∈N*)發(fā)布:2024/12/29 9:0:1組卷:291引用:3難度:0.8 -
3.已知n為正整數(shù),請用數(shù)學(xué)歸納法證明:1+
+12+……+131n.<2n發(fā)布:2024/10/27 17:0:2組卷:424引用:1難度:0.7