已知函數(shù)f(x)=lnx+1x,g(x)=f(x)-a,其中a>0.
(1)證明:f(x)≥1;
(2)討論函數(shù)g(x)的單調(diào)性;
(3)數(shù)列{an}(n∈N*)滿足a1∈(0,1),an+1=f(an),證明:當(dāng)a=1時,g(an+1-an+2an+2-an+3)<0.
f
(
x
)
=
lnx
+
1
x
{
a
n
}
(
n
∈
N
*
)
g
(
a
n
+
1
-
a
n
+
2
a
n
+
2
-
a
n
+
3
)
<
0
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/19 8:0:9組卷:17引用:1難度:0.6
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:226引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:263引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個極值點x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:138引用:2難度:0.2