定義:我們把對(duì)角線(xiàn)相等的四邊形叫做和美四邊形.
(1)請(qǐng)舉出一種你所學(xué)過(guò)的特殊四邊形中是和美四邊形的例子.
(2)如圖1,E,F(xiàn),G,H分別是四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),已知四邊形EFGH是菱形,求證:四邊形ABCD是和美四邊形;
(3)如圖2,四邊形ABCD是和美四邊形,對(duì)角線(xiàn)AC,BD相交于O,∠AOB=60°,E、F分別是AD、BC的中點(diǎn),請(qǐng)?zhí)剿鱁F與AC之間的數(shù)量關(guān)系,并證明你的結(jié)論.

【考點(diǎn)】四邊形綜合題.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/5 3:0:1組卷:914引用:7難度:0.3
相似題
-
1.如圖,矩形ABCD中,O為AC的中點(diǎn),過(guò)點(diǎn)O的直線(xiàn)分別與AB、CD交于點(diǎn)E、F,連接BF交AC于點(diǎn)M,連接DE、BO.若∠COB=60°,F(xiàn)O=FC=2,則下列結(jié)論:①FB⊥OC;②△EOB≌△CMB;③四邊形EBFD是菱形;④MB=2
.其中正確結(jié)論的個(gè)數(shù)是( ?。?/h2>3發(fā)布:2025/6/6 15:30:1組卷:623引用:3難度:0.3 -
2.閱讀下列材料:
問(wèn)題:如圖1,在?ABCD中,E是AD上一點(diǎn),AE=AB,∠EAB=60°,過(guò)點(diǎn)E作直線(xiàn)EF,在EF上取一點(diǎn)G,使得∠EGB=∠EAB,連接AG.
求證:EG=AG+BG.
小明同學(xué)的思路是:作∠GAH=∠EAB交GE于點(diǎn)H,構(gòu)造全等三角形,經(jīng)過(guò)推理使問(wèn)題得到解決.參考小明同學(xué)的思路,探究并解決下列問(wèn)題:
(1)完成上面問(wèn)題中的證明;
(2)如果將原問(wèn)題中的“∠EAB=60°”改為“∠EAB=90°”,原問(wèn)題中的其它條件不變(如圖2),請(qǐng)?zhí)骄烤€(xiàn)段EG、AG、BG之間的數(shù)量關(guān)系,并證明你的結(jié)論.發(fā)布:2025/6/6 15:30:1組卷:305引用:3難度:0.1 -
3.如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(0<t≤15).過(guò)點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出t的值,如果不能,說(shuō)明理由;
(3)在運(yùn)動(dòng)過(guò)程中,四邊形BEDF能否為正方形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/6 14:30:2組卷:723引用:16難度:0.3