中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線漸近線為y=±12x,過(guò)點(diǎn)P(-8,0),且斜率為14的直線l交雙曲線于A、B兩點(diǎn)(P在線段AB上),交y軸于C點(diǎn),滿足PA?PB=PC2.
(1)求雙曲線方程;
(2)若中心在原點(diǎn)的橢圓以雙曲線的實(shí)軸為短軸,垂直于直線l的動(dòng)直線與橢圓相交的弦中點(diǎn)都在雙曲線的一條漸近線上,求橢圓方程.
1
2
1
4
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:38引用:1難度:0.5
相似題
-
1.橢圓
(b>0)與雙曲線x225+y2b2=1有公共的焦點(diǎn),則b=.x28-y2=1發(fā)布:2024/12/30 13:0:5組卷:184引用:7難度:0.8 -
2.兩千多年前,古希臘大數(shù)學(xué)家阿波羅尼奧斯發(fā)現(xiàn),用一個(gè)不垂直于圓錐的軸的平面截圓錐,其截口曲線是圓錐曲線(如圖).已知圓錐軸截面的頂角為2θ,一個(gè)不過(guò)圓錐頂點(diǎn)的平面與圓錐的軸的夾角為α.當(dāng)
時(shí),截口曲線為橢圓;當(dāng)α=θ時(shí),截口曲線為拋物線;當(dāng)0<α<θ時(shí),截口曲線為雙曲線.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P在平面ABCD內(nèi),下列說(shuō)法正確的是( )θ<α<π2A.若點(diǎn)P到直線CC1的距離與點(diǎn)P到平面BB1C1C的距離相等,則點(diǎn)P的軌跡為拋物線 B.若點(diǎn)P到直線CC1的距離與點(diǎn)P到AA1的距離之和等于4,則點(diǎn)P的軌跡為橢圓 C.若∠BD1P=45°,則點(diǎn)P的軌跡為拋物線 D.若∠BD1P=60°,則點(diǎn)P的軌跡為雙曲線 發(fā)布:2024/12/11 15:30:1組卷:526引用:3難度:0.3 -
3.已知等軸雙曲線N的頂點(diǎn)分別是橢圓
的左、右焦點(diǎn)F1、F2.C:x26+y22=1
(Ⅰ)求等軸雙曲線N的方程;
(Ⅱ)Q為該雙曲線N上異于頂點(diǎn)的任意一點(diǎn),直線QF1和QF2與橢圓C的交點(diǎn)分別為E,F(xiàn)和G,H,求|EF|+4|GH|的最小值.發(fā)布:2024/12/29 3:0:1組卷:311引用:3難度:0.6