如圖是以等邊三角形OAB的每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形,記為勒洛△OAB(勒洛三角形是德國機械工程專家,機械運動學(xué)家勒洛首先發(fā)現(xiàn)的,故命名為勒洛三角形).在平面直角坐標(biāo)系xOy中,以坐標(biāo)原點O為極點,以x軸非負半軸為極軸,取相同的單位長度建立極坐標(biāo)系(規(guī)定:極徑ρ≥0,極角θ∈[-π,π]),已知A,B兩點的極坐標(biāo)分別為A(2,-π6),B(2,π6).
(1)求?AB和?OB的極坐標(biāo)方程;
(2)已知M點的極坐標(biāo)M(2,π12),Q是?AB上的動點,求|MQ|2的取值范圍.
A
(
2
,-
π
6
)
B
(
2
,
π
6
)
?
AB
?
OB
M
(
2
,
π
12
)
?
AB
【考點】簡單曲線的極坐標(biāo)方程.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:99引用:4難度:0.5
相似題
-
1.在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1:ρcosθ=3,曲線C2:ρ=4cosθ(
).0≤θ<π2
(1)求C1與C2交點的極坐標(biāo);
(2)設(shè)點Q在C2上,,求動點P的極坐標(biāo)方程.OQ=23QP發(fā)布:2024/12/29 3:0:1組卷:144引用:5難度:0.3 -
2.已知點的極坐標(biāo)是
,則它的直角坐標(biāo)是(3,π4)發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7 -
3.極坐標(biāo)方程ρcosθ=2sin2θ表示的曲線為( )
發(fā)布:2024/12/29 2:30:1組卷:244引用:6難度:0.7
把好題分享給你的好友吧~~