已知f(x)=ex-tx,x∈R.
(1)函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求t的取值范圍.
(2)當(dāng)t=1時(shí),證明:?ξ∈(a,b)(其中a>0),使得f(b)-f(a)b-a=eξ-1.
f
(
b
)
-
f
(
a
)
b
-
a
=
e
ξ
-
1
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的最值.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/21 8:0:9組卷:50引用:3難度:0.6
相似題
-
1.已知函數(shù)
,當(dāng)x∈(0,+∞)時(shí),f(x)≥0恒成立,則實(shí)數(shù)a的取值范圍是( ?。?/h2>f(x)=e2x-2lnx+ax+1x2A.(-∞,1] B.(-∞,e2-1] C.(-∞,e] D.(-∞,2] 發(fā)布:2024/12/20 10:0:1組卷:66引用:2難度:0.5 -
2.函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f'(x),且滿足
,若不等式f′(x)+2xf(x)>0在x∈(1,+∞)上恒成立,則實(shí)數(shù)a的取值范圍是( ?。?/h2>ax?f(ax)lnx≥f(lnx)?lnxaxA. (0,1e]B. [1e,+∞)C.(0,e] D. (1e,+∞)發(fā)布:2024/12/20 7:0:1組卷:222引用:6難度:0.6 -
3.若存在x0∈[-1,2],使不等式x0+(e2-1)lna≥
+e2x0-2成立,則a的取值范圍是( ?。?/h2>2aex0A.[ ,e2]12eB.[ ,e2]1e2C.[ ,e4]1e2D.[ ,e4]1e發(fā)布:2024/12/20 6:0:1組卷:261引用:9難度:0.4
把好題分享給你的好友吧~~