數(shù)學(xué)與建筑的結(jié)合造就建筑藝術(shù)品,2018年南非雙曲線大教堂面世便驚艷世界,如圖.若將此大教堂外形弧線的一段近似看成焦點在y軸上的雙曲線y2a2-x2b2=1(a>0,b>0)上支的一部分,且上焦點到上頂點的距離為2,到漸近線距離為22,則此雙曲線的離心率為( ?。?/h1>
y
2
a
2
x
2
b
2
2
【考點】求雙曲線的離心率.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:13引用:1難度:0.7
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點,P為x2+y2=c2與雙曲線C1的交點,且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( ?。?/h2>13發(fā)布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( ?。?/h2>32發(fā)布:2025/1/5 18:30:5組卷:227引用:3難度:0.7 -
3.設(shè)a>1,則雙曲線
的離心率e的取值范圍是( ?。?/h2>x2a2-y2(a+1)2=1發(fā)布:2024/12/29 0:0:2組卷:789引用:17難度:0.7
相關(guān)試卷