已知函數(shù)f(x)=2x+ax(x>0).
(1)若f(x)≥0在(1,+∞)上恒成立,求a的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)-(a+2)(x>0),解不等式g(x)>0.
f
(
x
)
=
2
x
+
a
x
(
x
>
0
)
【考點】函數(shù)恒成立問題;其他不等式的解法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/3 4:0:8組卷:17引用:2難度:0.5
相似題
-
1.設(shè)函數(shù)f(x)=ex(2x-1)-ax+a,其中a<1,若存在唯一的整數(shù)x0,使得f(x0)<0,則a的取值范圍是.
發(fā)布:2024/12/29 5:0:1組卷:535引用:36難度:0.5 -
2.把符號
稱為二階行列式,規(guī)定它的運算法則為aamp;bcamp;d.已知函數(shù)aamp;bcamp;d=ad-bc.f(θ)=cosθamp;1-λsinθ2amp;cosθ
(1)若,θ∈R,求f(θ)的值域;λ=12
(2)函數(shù),若對?x∈[-1,1],?θ∈R,都有g(shù)(x)-1≥f(θ)恒成立,求實數(shù)λ的取值范圍.g(x)=x2amp;-11amp;1x2+1發(fā)布:2024/12/29 10:30:1組卷:13引用:5難度:0.5 -
3.對于任意x1,x2∈(2,+∞),當x1<x2時,恒有
成立,則實數(shù)a的取值范圍是alnx2x1-2(x2-x1)<0發(fā)布:2024/12/29 7:30:2組卷:61引用:3難度:0.6
把好題分享給你的好友吧~~