試卷征集
加入會員
操作視頻

閱讀理解:對于線段MN和點Q,定義:若QM=QN,則稱點Q為線段MN的“等距點”;特別地,若∠MQN=90°,則稱點Q是線段MN的“完美等距點”.
解決問題:如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(4,0),點P(m,n)是直線y=-
1
2
x上一動點.

(1)已知4個點:B(2,-3)、C(2,-2)、D(-2,2)、E(2,
3
),則線段OA的“等距點”是
B,C,E
B,C,E
,線段OA的“完美等距點”是
C
C

(2)若OP=
5
,點H在y軸上,且H是線段AP的“等距點”,求點H的坐標;
(3)當m>0,是否存在這樣的點N,使點N是線段OA的“等距點”且為線段OP的“完美等距點”,若存在,求出點P的坐標;若不存在,說明理由.

【答案】B,C,E;C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/8/10 10:0:1組卷:693引用:3難度:0.4
相似題
  • 1.如圖,平面直角坐標系中,CB∥OA,∠OCB=90°,CB=2,OC=4,直線
    y
    =
    -
    1
    2
    x
    +
    2
    過A點,且與y軸交于D點.
    (1)求點A、點B的坐標;
    (2)試說明:AD⊥BO;
    (3)若點M是直線AD上的一個動點,在x軸上是否存在另一個點N,使以O、B、M、N為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標;若不存在,請說明理由.

    發(fā)布:2024/12/23 19:30:2組卷:1192引用:3難度:0.4
  • 2.如圖,在梯形ABCD中,AD∥BC,AB=CD,以邊BC所在直線為x軸,邊BC的中點O為原點建立直角坐標平面,已知點B的坐標為(-4,0),直線AB的解析式為y=2x+m.
    (1)求m的值;
    (2)求直線CD的解析式;
    (3)若點A在第二象限,是否存在梯形ABCD,它的面積為30?若存在,請求出點A的坐標;若不存在,請說明理由.

    發(fā)布:2025/1/21 8:0:1組卷:5引用:0難度:0.3
  • 3.如圖1,已知直線y=2x+2與y軸,x軸分別交于A,B兩點,以B為直角頂點在第二象限作等腰Rt△ABC
    (1)求點C的坐標,并求出直線AC的關系式;
    (2)如圖2,直線CB交y軸于E,在直線CB上取一點D,連接AD,若AD=AC,求證:BE=DE.
    (3)如圖3,在(1)的條件下,直線AC交x軸于點M,P(-
    5
    2
    ,k)是線段BC上一點,在x軸上是否存在一點N,使△BPN面積等于△BCM面積的一半?若存在,請求出點N的坐標;若不存在,請說明理由.

    發(fā)布:2024/12/23 17:30:9組卷:4532引用:6難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正