如圖①所示是一個長為2m,寬為2n的長方形,沿圖中虛線用剪刀均分成四個小長方形,然后按圖②的方式拼成一個正方形.

(1)按要求填空:
①你認(rèn)為圖②中的陰影部分的正方形的邊長等于 m-nm-n;
②請用兩種不同的方法表示圖②中陰影部分的面積:
方法1:(m-n)2(m-n)2
方法2:(m+n)2-4mn(m+n)2-4mn
③觀察圖②,請寫出代數(shù)式(m+n)2,(m-n)2,mn這三個代數(shù)式之間的等量關(guān)系:(m-n)2=(m+n)2-4mn(m-n)2=(m+n)2-4mn;
(2)根據(jù)(1)題中的等量關(guān)系,解決如下問題:若|m+n-6|+|mn-4|=0,求(m-n)2的值.
(3)實際上有許多代數(shù)恒等式可以用圖形的面積來表示,如圖③,它表示了 (2m+n)(m+n)=2m2+3mn+n2(2m+n)(m+n)=2m2+3mn+n2.
【考點】完全平方公式的幾何背景.
【答案】m-n;(m-n)2;(m+n)2-4mn;(m-n)2=(m+n)2-4mn;(2m+n)(m+n)=2m2+3mn+n2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/5 14:30:1組卷:1229引用:9難度:0.3
相似題
-
1.有兩個正方形A,B,將A,B并列放置后構(gòu)造新的長方形得到圖甲,將A,B并列放置后構(gòu)造新的正方形得到圖乙,若圖甲和圖乙中陰影部分的面積分別為10和32,則正方形B的面積為( ?。?/h2>
發(fā)布:2025/6/6 17:30:2組卷:78引用:4難度:0.7 -
2.閱讀學(xué)習(xí):數(shù)學(xué)中有很多恒等式可以用面積來得到.如圖1,可以求出陰影部分的面積是a2-b2;如圖2,把圖1中的陰影部分裁剪下來,重新拼成一個長方形,它的長是a+b,寬是a-b,比較圖1、圖2陰影部分的面積,可以得到恒等式(a+b)(a-b)=a2-b2.
(1)觀察圖3,請你寫出(a+b)2,(a-b)2,ab之間的一個恒等式:(a+b)2=;
(2)根據(jù)(1)的結(jié)論,若(x+y)2=10,(x-y)2=2,求下列各式的值;
①xy;
②x2+y2.發(fā)布:2025/6/6 20:0:1組卷:490引用:4難度:0.6 -
3.有若干個大小形狀完全相同的小長方形現(xiàn)將其中4個如圖1擺放,構(gòu)造出一個正方形,其中陰影部分面積為35;其中5個如圖2擺放,構(gòu)造出一個長方形,其中陰影部分面積為102(各個小長方形之間不重疊不留空),則每個小長方形的面積為( ?。?br />
發(fā)布:2025/6/6 16:30:1組卷:604引用:3難度:0.7