已知函數f(x)=ax+lnx.
(1)討論函數f(x)的單調區(qū)間;
(2)當a=-1時,函數g(x)=f(x)+excosx-lnx-m在[0,π2]上的最大值為0,求實數m的值.
[
0
,
π
2
]
【考點】利用導數研究函數的最值;利用導數研究函數的單調性.
【答案】(1)當a≥0時,函數f(x)在(0,+∞)上單調遞增;
當a<0時,函數f(x)在單調遞增,上單調遞減.
(2)m=1.
當a<0時,函數f(x)在
(
0
,-
1
a
)
(
-
1
a
,
+
∞
)
(2)m=1.
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/7/12 8:0:9組卷:14引用:3難度:0.5
相似題
-
1.已知函數
,若關于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:299引用:2難度:0.4 -
2.已知函數f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:48引用:4難度:0.5 -
3.已知函數f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:200引用:2難度:0.1