設(shè)函數(shù)g(x)=1-22x+1.
(1)判斷g(x)的單調(diào)性,并用定義證明你的結(jié)論;
(2)若函數(shù)h(x)=e2x+mex(其中e=2.71828L)在x∈[0,ln4]的最小值為0,求實(shí)數(shù)m的取值范圍.
g
(
x
)
=
1
-
2
2
x
+
1
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/24 11:0:1組卷:34引用:1難度:0.5
相似題
-
1.設(shè)f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,]上的最大值.32發(fā)布:2024/12/10 12:0:1組卷:635引用:40難度:0.5 -
2.已知a>0,且a≠1,若函數(shù)
有最大值,則關(guān)于x的不等式f(x)=aln(x2-2x+3)的解集為.loga(x2-5x+7)>0發(fā)布:2024/12/2 9:0:2組卷:166引用:4難度:0.5 -
3.設(shè)函數(shù)y=lnx的反函數(shù)為y=g(x),函數(shù)f(x)=
?g(x)-x2ex3-x2(x∈R)13
(Ⅰ)求函數(shù)y=f(x)的單調(diào)區(qū)間
(Ⅱ)求y=f(x)在[-1,2ln3]上的最小值.發(fā)布:2024/12/6 8:0:2組卷:88引用:1難度:0.3
把好題分享給你的好友吧~~