如圖,在平面直角坐標系中,拋物線y=-12x2+bx+c與x軸交于A(-2,0)、B(4,0)兩點(點A在點B的左側(cè)),與y軸交于點C,連接AC、BC,點P為直線BC上方拋物線上一動點,連接OP交BC于點Q.
(1)求拋物線的函數(shù)表達式;
(2)當PQOQ的值最大時,求點P的坐標和PQOQ的最大值;
(3)把拋物線y=-12x2+bx+c沿射線AC方向平移5個單位得新拋物線y',M是新拋物線上一點,N是新拋物線對稱軸上一點,當以M、N、B、C為頂點的四邊形是平行四邊形時,直接寫出N點的坐標.
-
1
2
x
2
+
PQ
OQ
PQ
OQ
-
1
2
x
2
+
bx
+
c
5
【考點】二次函數(shù)綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1830引用:11難度:0.3
相似題
-
1.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,拋物線的解析式為y=x2-2x-3,AB為半圓的直徑,則這個“果圓”被y軸截得的弦CD的長為.
發(fā)布:2024/12/23 17:30:9組卷:3619引用:36難度:0.4 -
2.已知,如圖1,過點E(0,-1)作平行于x軸的直線l,拋物線y=
x2上的兩點A、B的橫坐標分別為-1和4,直線AB交y軸于點F,過點A、B分別作直線l的垂線,垂足分別為點C、D,連接CF、DF.14
(1)求點A、B、F的坐標;
(2)求證:CF⊥DF;
(3)點P是拋物線y=x2對稱軸右側(cè)圖象上的一動點,過點P作PQ⊥PO交x軸于點Q,是否存在點P使得△OPQ與△CDF相似?若存在,請求出所有符合條件的點P的坐標;若不存在,請說明理由.14發(fā)布:2024/12/23 11:30:2組卷:469引用:24難度:0.1 -
3.如圖,將矩形OABC置于平面直角坐標系中,點A的坐標為(0,4),點C在x軸上,點D(3
,1)在BC上,將矩形OABC沿AD折疊壓平,使點B落在坐標平面內(nèi),設(shè)點B的對應點為點E.若拋物線y=ax2-45ax+10(a≠0且a為常數(shù))的頂點落在△ADE的內(nèi)部,則a的取值范圍是( )5發(fā)布:2024/12/26 1:30:3組卷:2655引用:7難度:0.7
把好題分享給你的好友吧~~