問題背景:如圖1,在等邊△ABC中,作AD⊥BC于點(diǎn)D,則D為BC的中點(diǎn),∠BAD=∠CAD=12∠BAC=30°,設(shè)BD=a,則CD=a,AB=BC=AC=2a,由勾股定理可知AD=3a.若將△ABD和△ACD重新組合為如圖2的△ABA',此時(shí),∠ABA'=120°,AB=A'B,我們可以得到AA′AB=2ADAB=3.請(qǐng)運(yùn)用此結(jié)論完成以下任務(wù).
遷移應(yīng)用:如圖3,AB=AC,AD=AE,∠BAC=∠DAE=120°,D、E、C三點(diǎn)在同一條直線上,連接BD.
(1)求證:△ADB≌△AEC.
(2)請(qǐng)直接寫出線段AD、BD、CD之間的數(shù)量關(guān)系.
(3)如圖4,△ABD與△CBD都是等邊三角形,在∠ABC內(nèi)作射線BM,作點(diǎn)C關(guān)于BM的對(duì)稱點(diǎn)E,連接AE并延長(zhǎng)交BM于點(diǎn)F,連接CE、CF.若AE=5,EF=2,求BF的長(zhǎng).

1
2
∠
BAC
=
30
°
AD
=
3
a
AA
′
AB
=
2
AD
AB
=
3
【考點(diǎn)】三角形綜合題.
【答案】(1)見解析過程;
(2)CD=AD+BD;
(3)3.
(2)CD=
3
(3)3
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/20 4:0:1組卷:272引用:3難度:0.3
相似題
-
1.已知在平面直角坐標(biāo)系中,點(diǎn)A(a,b)滿足
=0,AB⊥x軸于點(diǎn)B.12a-3+(2-b)2
(1)點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為;
(2)如圖1,若點(diǎn)M在x軸上,連接MA,使S△ABM=2,求出點(diǎn)M的坐標(biāo);
(3)如圖2,P是線段AB所在直線上一動(dòng)點(diǎn),連接OP,OE平分∠PON,交直線AB于點(diǎn)E,作OF⊥OE,當(dāng)點(diǎn)P在直線AB上運(yùn)動(dòng)過程中,請(qǐng)?zhí)骄俊螼PE與∠FOP的數(shù)量關(guān)系,并證明.發(fā)布:2025/6/7 7:0:1組卷:642引用:7難度:0.3 -
2.探究
(1)【問題初探】
如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點(diǎn),且DE=CE,連接BD.直接寫出BD與AC的位置關(guān)系和數(shù)量關(guān)系:;
(2)【問題改編】
如圖2,在△ABE和△CDE中,∠AEB=∠CED=90°,AE=BE,DE=CE,連接BD,AC.求證:BD⊥AC;
(3)【問題拓展】
如圖3,將(2)中的“90°”改為“60°”,(2)中的其他條件不變,若BD與AC交于點(diǎn)F,求∠DFC的度數(shù).發(fā)布:2025/6/7 9:0:2組卷:32引用:2難度:0.2 -
3.如圖,以直角三角形AOC的直角頂點(diǎn)O為原點(diǎn),以O(shè)C,OA所在直線為軸和軸建立平面直角坐標(biāo)系,點(diǎn)A(0,a),C(b,0)滿足
+|b-8|=0.a-6
(1)a=;b=.
(2)已知坐標(biāo)軸上有兩動(dòng)點(diǎn)P,Q同時(shí)出發(fā),P點(diǎn)從C點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)O勻速移動(dòng),Q點(diǎn)從O點(diǎn)出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)A勻速移動(dòng),點(diǎn)P到達(dá)O點(diǎn)整個(gè)運(yùn)動(dòng)隨之結(jié)束.AC的中點(diǎn)D的坐標(biāo)是(4,3),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
問:是否存在這樣的t,使得△ODP與△ODQ的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
(3)在(2)的條件下,若∠DOC=∠DCO,點(diǎn)G是第二象限中一點(diǎn),并且y軸平分∠GOD.點(diǎn)E是線段OA上一動(dòng)點(diǎn),連接CE交OD于點(diǎn)H,當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)的過程中,探究∠GOD,∠OHC,∠ACE之間的數(shù)量關(guān)系,并證明你的結(jié)論.發(fā)布:2025/6/7 7:30:1組卷:146引用:1難度:0.1