試卷征集
加入會員
操作視頻

(1)問題提出:如圖①,在矩形ABCD中,AB=1,BC=
3
,P是AD上一動點,則BP+
1
2
PD的最小值為
3
3

(2)問題探究:如圖②,在正方形ABCD中,AB=3,點E是平面上一點,且CE=1,連接BE在BE上方作正方形BEMN,求BM的最大值.
(3)問題解決:為迎接2021年9月在西安舉辦的第14屆全運會,打造體育歷史文化名城,某小區(qū)對一正方形區(qū)域ABCD進行設計改造,方便大家鍛煉運動.如圖③,在正方形內(nèi)設計等腰直角△CEF為健身運動區(qū)域,直角頂點E設計在草坪區(qū)域扇形MBN的弧MN上.設計鋪設CF和DF這兩條不同造價鵝卵石路,已知AB=40米,BM=10
2
,∠CEF=90°,CE=EF,若鋪設CF路段造價為每米200元,鋪設DF路段的造價為每米100元,請求出鋪設CF和DF兩條路段的總費用的最小值.

【考點】圓的綜合題
【答案】
3
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/18 11:0:12組卷:142引用:1難度:0.3
相似題
  • 1.如圖,AB是圓O的直徑,弦CD與AB交于點H,∠BDC=∠CBE.
    (1)求證:BE是圓O的切線;
    (2)若CD⊥AB,AC=2,BH=3,求劣弧BC的長;
    (3)如圖,若CD∥BE,作DF∥BC,滿足BC=2DF,連接FH、BF,求證:FH=BF.

    發(fā)布:2025/1/28 8:0:2組卷:96引用:1難度:0.1
  • 2.如圖,AB是圓O的直徑,弦CD⊥AB于G,射線DO與直線CE相交于點E,直線DB與CE交于點H,且∠BDC=∠BCH.
    (1)求證:直線CE是圓O的切線.
    (2)如圖1,若OG=BG,BH=1,直接寫出圓O的半徑;
    (3)如圖2,在(2)的條件下,將射線DO繞D點逆時針旋轉,得射線DM,DM與AB交于點M,與圓O及切線CF分別相交于點N,F(xiàn),當GM=GD時,求切線CF的長.

    發(fā)布:2025/1/28 8:0:2組卷:775引用:2難度:0.1
  • 3.如圖,AB是圓O的直徑,AB=6,D是半圓ADB上的一點,C是弧BD的中點.
    (1)若∠ABD=30°,求BC的長和由弦BC、BD、和弧CD圍成的圖形面積;
    (2)若弧AD的度數(shù)是120度,在半徑OB上是否存在點P,使得PC+PD的值最小,如果存在,請在備用圖中畫出P的位置,并求PC+PD的最小值,如果不存在,請說明理由.

    發(fā)布:2025/1/28 8:0:2組卷:42引用:0難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正