(1)問題提出:如圖①,在矩形ABCD中,AB=1,BC=3,P是AD上一動(dòng)點(diǎn),則BP+12PD的最小值為33.
(2)問題探究:如圖②,在正方形ABCD中,AB=3,點(diǎn)E是平面上一點(diǎn),且CE=1,連接BE在BE上方作正方形BEMN,求BM的最大值.
(3)問題解決:為迎接2021年9月在西安舉辦的第14屆全運(yùn)會(huì),打造體育歷史文化名城,某小區(qū)對(duì)一正方形區(qū)域ABCD進(jìn)行設(shè)計(jì)改造,方便大家鍛煉運(yùn)動(dòng).如圖③,在正方形內(nèi)設(shè)計(jì)等腰直角△CEF為健身運(yùn)動(dòng)區(qū)域,直角頂點(diǎn)E設(shè)計(jì)在草坪區(qū)域扇形MBN的弧MN上.設(shè)計(jì)鋪設(shè)CF和DF這兩條不同造價(jià)鵝卵石路,已知AB=40米,BM=102,∠CEF=90°,CE=EF,若鋪設(shè)CF路段造價(jià)為每米200元,鋪設(shè)DF路段的造價(jià)為每米100元,請(qǐng)求出鋪設(shè)CF和DF兩條路段的總費(fèi)用的最小值.

3
1
2
3
3
2
【考點(diǎn)】圓的綜合題.
【答案】
3
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/18 11:0:12組卷:161引用:1難度:0.3
相似題
-
1.定義:如果一個(gè)四邊形的一組對(duì)角互余,那么我們稱這個(gè)四邊形為“對(duì)角互余四邊形”.
(1)如圖1,在“對(duì)角互余四邊形”ABCD中,AD=CD,BD=6.5,∠ABC+∠ADC=90°,AB=4,CB=3,求四邊形ABCD的面積.
(2)如圖2,在四邊形ABCD中,連接AC,∠BAC=90°,點(diǎn)O是△ACD外接圓的圓心,連接OA,∠OAC=∠ABC.求證:四邊形ABCD是“對(duì)角互余四邊形”;
(3)在(2)的條件下,如圖3,已知AD=a,DC=b,AB=3AC,連接BD,求BD2的值.(結(jié)果用帶有a,b的代數(shù)式表示)發(fā)布:2025/5/25 2:0:6組卷:305引用:2難度:0.3 -
2.如圖,四邊形ABCE內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在AB的延長線上,延長AE交BC的延長線于點(diǎn)F,點(diǎn)C是BF的中點(diǎn),∠BCD=∠CAE.
(1)求證:CD是⊙O的切線;
(2)求證:△CEF是等腰三角形;
(3)若BD=1,CD=2,求cos∠CBA的值及EF的長.發(fā)布:2025/5/25 1:0:1組卷:818引用:7難度:0.1 -
3.如圖,在Rt△ABC中,∠B=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E在AC上,以AE為直徑的⊙O經(jīng)過點(diǎn)D.
(1)求證:①BC是⊙O的切線;
②CD2=CE?CA;
(2)若點(diǎn)F是劣弧AD的中點(diǎn),且CE=3,試求陰影部分的面積.發(fā)布:2025/5/25 1:0:1組卷:3655引用:17難度:0.4