勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小明以靈感,他驚喜的發(fā)現(xiàn),當兩個全等的直角三角形如圖①或圖②擺放時,都可以用“面積法”來證明,下面是小明利用圖①證明勾股定理的過程:將兩個全等的直角三角形按圖①所示擺放,其中∠DAB=90°,求證:a2+b2=c2.
證明:連接DB,過點D作BC邊上的高DF,則DF=EC=b-a,FC=DE=b,
∵S四邊形ADCB=S△ACD+S△ABC=12b2+12ab,
S四邊形ADCB=S△ADB+S△DCB=12c2+12a(b-a)
∴12b2+12ab=12c2+12a(b-a)
∴a2+b2=c2.
請參照上述證法,利用圖②完成下面的證明:
將兩個全等的直角三角形按圖②所示擺放,其中∠DAB=90°.求證:a2+b2=c2.
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
【考點】勾股定理的證明;直角三角形全等的判定.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/20 7:0:2組卷:211引用:1難度:0.7
相似題
-
1.用四個全等的直角三角形鑲嵌而成的正方形如圖所示,已知大正方形的面積為49,小正方形的面積為4,若x,y表示直角三角形的兩直角邊長(x>y),給出下列四個結(jié)論正確的是 .(填序號即可)
①x-y=2;
②x2+y2=49;
③2xy=45;
④x+y=9.發(fā)布:2024/12/23 12:0:2組卷:443引用:3難度:0.6 -
2.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b,若ab=8,大正方形的面積為25,則小正方形的邊長為( ?。?/h2>
A.9 B.6 C.4 D.3 發(fā)布:2024/12/19 23:30:5組卷:1737引用:28難度:0.6 -
3.“趙爽弦圖”巧妙地利用面積關(guān)系證明了勾股定理,是我國古代數(shù)學的驕傲.如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形.設直角三角形較長直角邊長為a,較短直角邊長為b.若ab=8,大正方形的面積為25,則EF的長為( ?。?/h2>
A.9 B.9 2C.3 2D.3 發(fā)布:2024/12/9 18:0:2組卷:526引用:5難度:0.6
把好題分享給你的好友吧~~