已知函數(shù)y=-x2+(m-3)x+2m(m為常數(shù)).
(1)請寫出該函數(shù)的頂點坐標:(m-32,m2+2m+94)(m-32,m2+2m+94)(用m表示);
(2)該拋物線的頂點隨著m的變化而移動,求該頂點滿足的函數(shù)關(guān)系式;當頂點移動到最低處時,求該拋物線的頂點坐標;
(3)若直線y=2x+1與二次函數(shù)圖象交于A、B兩點,令d=AB2,當-4≤m≤2時,求d的最大值和最小值.
m
-
3
2
m
2
+
2
m
+
9
4
m
-
3
2
m
2
+
2
m
+
9
4
【考點】二次函數(shù)綜合題.
【答案】(,)
m
-
3
2
m
2
+
2
m
+
9
4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/9/14 18:0:9組卷:99引用:1難度:0.3
相似題
-
1.如圖,已知拋物線y=-x2+bx+c與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C(0,3),且點O到點C距離是點O到點B距離的3倍,點M是拋物線上一點,且位于對稱軸的左側(cè),過點M作MN∥x軸交拋物線于點N.
(1)求拋物線的解析式;
(2)若點M沿拋物線向下移動,使得8≤MN≤9,求點M的縱坐標yM的取值范圍;
(3)若點P是拋物線上任意一點,點P與點A的縱坐標的差的絕對值不超過3,請直接寫出P點橫坐標xP的取值范圍.發(fā)布:2025/5/22 9:0:1組卷:298引用:1難度:0.3 -
2.在平面直角坐標系中,拋物線y=mx2-4mx+4m+6(m<0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,頂點為點D.
(1)當m=-6時,直接寫出點A,C,D的坐標;
(2)如圖1,直線DC交x軸于點E,若,求m的值及直線DE的解析式;tan∠BED=43
(3)如圖2,在(2)的條件下,若點Q為OC的中點,連接BQ,動點P在第一象限的拋物線上運動,過點P作x軸的垂線.垂足為H,交BQ于點M,交直線ED于點J,過點M作MN⊥DE,垂足為N.是否存在PM與MN和的最大值?若存在,求出PM與MN和的最大值;若不存在,請說明理由.發(fā)布:2025/5/22 9:0:1組卷:173引用:2難度:0.1 -
3.如圖,在平面直角坐標系中,拋物線y=ax2+bx+2與x軸的兩交點分別是A(-1,0),B(4,0),與y軸交于點C,連接BC.
(1)求該拋物線的解析式;
(2)點P為直線BC上方拋物線上的點,過P作PE⊥AB于點E,交BC于點D,F(xiàn)為射線DC上的點,連接PF,且∠FPD=∠FDP,求PF+PD的最大值,以及此時點P的坐標;
(3)在(2)的條件下,將拋物線y=ax2+bx+2沿射線BC方向平移個單位長度,平移后的拋物線與y軸交于點Q,點M為平移后拋物線對稱軸上的點,N為平面內(nèi)一點,直接寫出所有使得以點P,Q,M,N為頂點的四邊形為菱形的點N的坐標.5發(fā)布:2025/5/22 8:30:1組卷:511引用:3難度:0.3
相關(guān)試卷