已知函數(shù)f(x)=aln(x-a)-12x2+x(a<0).
(1)求f(x)的單調(diào)區(qū)間;
(2)若-1<a<2(ln2-1),求證:函數(shù)f(x)只有一個零點x0,且a+1<x0<a+2;
(3)當(dāng)a=-45時,記函數(shù)f(x)的零點為x0,若對任意x1,x2∈[0,x0]且x2-x1=1,都有|f(x2)-f(x1)|≥m成立,求實數(shù)m的最大值.(本題可參考數(shù)據(jù):ln2≈0.7,ln94≈0.8,ln95≈0.59)
1
2
x
2
4
5
9
4
9
5
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/9 8:0:9組卷:40引用:3難度:0.3
相似題
-
1.已知函數(shù)
,若關(guān)于x的不等式f(x)=ln2+x2-x+1對任意x∈(0,2)恒成立,則實數(shù)k的取值范圍( ?。?/h2>f(kex)+f(-12x)>2發(fā)布:2025/1/5 18:30:5組卷:295引用:2難度:0.4 -
2.已知函數(shù)f(x)=ax3+x2+bx(a,b∈R)的圖象在x=-1處的切線斜率為-1,且x=-2時,y=f(x)有極值.
(1)求f(x)的解析式;
(2)求f(x)在[-3,2]上的最大值和最小值.發(fā)布:2024/12/29 12:30:1組卷:42引用:3難度:0.5 -
3.已知函數(shù)f(x)=
.ex-ax21+x
(1)若a=0,討論f(x)的單調(diào)性.
(2)若f(x)有三個極值點x1,x2,x3.
①求a的取值范圍;
②求證:x1+x2+x3>-2.發(fā)布:2024/12/29 13:0:1組卷:183引用:2難度:0.1