已知:△ABC為等邊三角形.

(1)如圖1,點D、E分別為邊BC、AC上的點,且BD=CE.
①求證:△ABD≌△BCE;
②求∠AFE的度數(shù).
(2)如圖2,點D為△ABC外一點,∠BDC=60°,BA、CD的延長線交于點E,連接AD,猜想線段AD、CD、BD之間的數(shù)量關(guān)系并加以證明.
(3)如圖3,D是等邊三角形ABC外一點.若BD=8,CD=6,連接AD,直接寫出AD的最大值與最小值的差.
【考點】三角形綜合題.
【答案】(1)①證明見解析部分;
②60°;
(2)結(jié)論:BD=AD+DC.證明見解析部分;
(3)12.
②60°;
(2)結(jié)論:BD=AD+DC.證明見解析部分;
(3)12.
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:279引用:1難度:0.1
相似題
-
1.線段和角是我們初中數(shù)學(xué)常見的平面幾何圖形,它們的表示方法、和差計算以及線段的中點、角的平分線的概念等有很多相似之處,所以研究線段或角的問題時可以運用類比的方法.
(1)特例感知:
如圖1,已知AB=10cm,點D是線段AC的中點,點E是線段BC的中點.若BC=6cm,則線段DE=cm.
(2)數(shù)學(xué)思考:
如圖1,已知AB=10cm,若C是線段AB上的一個動點,點D是線段AC的中點,點E是線段BC的中點,線段DE的長會發(fā)生變化嗎?說明理由.
(3)知識遷移:
如圖2,OB是∠AOC內(nèi)部的一條射線,把三角尺中60°角的頂點放在點O處,轉(zhuǎn)動三角尺,當(dāng)三角尺的邊OD平分∠AOB時,在角尺的另一邊OE與正好平分∠BOC,求∠AOC的度數(shù).發(fā)布:2025/6/5 16:30:2組卷:126引用:1難度:0.6 -
2.在平面直角坐標(biāo)系中,A(6,a),B(b,0),M(0,c),且
,P點為y軸上一動點.(b-2)2+|a-6|+c-6=0
(1)求點B、M的坐標(biāo);
(2)當(dāng)P點在線段OM上運動時,試問是否存在一個點P使S△PAB=13,若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
(3)不論點P點運動到直線OM上的任何位置(不包括點O,M),∠PAM、∠APB、∠PBO三者之間是否都存在某種固定的數(shù)量關(guān)系,如果有,請寫出來并請選擇其中一種結(jié)論進行證明;如果沒有,請說明理由.發(fā)布:2025/6/5 18:0:1組卷:35引用:3難度:0.1 -
3.在△ABC中,∠BAC=90°,
,D為BC上任意一點,E為AC上任意一點.AB=AC=22
(1)如圖1,連接DE,若∠CDE=60°,AC=4AE,求DE的長.
(2)如圖2,若點D為BC中點,連接AD,點F為AD上任意一點,連接EF并延長交AB于點M,將線段EF繞點E順時針旋轉(zhuǎn)90°得到線段EG,連接AG.點N在AC上,∠AGN=∠AEG且,求證:GN=MF.AM+AF=2AE
(3)如圖3,點D為BC中點,連接AD,點F為AD的中點,連接EF、BF,將線段EF繞點E順時針旋轉(zhuǎn)90°得到線段EG,連接AG,H為直線AB上一動點,連接FH,將△BFH沿FH翻折至△ABC所在平面內(nèi),得到△B′FH,連接B′G,直接寫出線段B′G的長度的最大值.發(fā)布:2025/6/5 18:0:1組卷:415引用:2難度:0.1