如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ABC=π2,AD=2,AB=23,BC=6.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)PA長(zhǎng)為何值時(shí),直線(xiàn)PC與平面PBD所成角最大?并求此時(shí)該角的正弦值.
AD
∥
BC
,
∠
ABC
=
π
2
AB
=
2
3
【考點(diǎn)】直線(xiàn)與平面所成的角;平面與平面垂直.
【答案】(Ⅰ)證明見(jiàn)解析;
(Ⅱ)|PA|=2,直線(xiàn)PC與平面PBD所成角最大,此時(shí)該角的正弦值為.
(Ⅱ)|PA|=2
3
3
5
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:36引用:1難度:0.6
相似題
-
1.AB為圓O的直徑,點(diǎn)E,F(xiàn)在圓上,AB∥EF,矩形ABCD所
在平面與圓O所在平面互相垂直,
已知AB=2,EF=1.
(1)求證:BF⊥平面DAF;
(2)求BF與平面ABCD所成的角;
(3)若AC與BD相交于點(diǎn)M,
求證:ME∥平面DAF.發(fā)布:2025/1/20 8:0:1組卷:29引用:3難度:0.1 -
2.如圖,AB為圓O的直徑,點(diǎn)E,F(xiàn)在圓上,AB∥EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,EF=1.
(Ⅰ)求證:BF⊥平面ADF;
(Ⅱ)求BF與平面ABCD所成的角;
(Ⅲ)在DB上是否存在一點(diǎn)M,使ME∥平面ADF?若不存在,請(qǐng)說(shuō)明理由;若存在,請(qǐng)找出這一點(diǎn),并證明之.發(fā)布:2025/1/20 8:0:1組卷:23引用:3難度:0.3 -
3.如圖,AB是圓O的直徑,PA垂直圓O所在的平面,C是圓O上的點(diǎn).
(1)求證:BC⊥平面PAC;
(2)設(shè)Q為PA的中點(diǎn),G△AOC的重心,求證:QG∥平面PBC.
(3)若AC=BC=,PC與平面ACB所成的角為3,求三棱錐P-ACB的π3
體積.發(fā)布:2025/1/20 8:0:1組卷:74引用:1難度:0.7