某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 x(℃) |
10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) y(人) |
22 | 25 | 29 | 26 | 16 | 12 |
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程y=
?
b
?
a
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
【考點(diǎn)】經(jīng)驗(yàn)回歸方程與經(jīng)驗(yàn)回歸直線.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:197引用:47難度:0.5
相似題
-
1.某科研機(jī)構(gòu)為了了解氣溫對(duì)蘑菇產(chǎn)量的影響,隨機(jī)抽取了某蘑菇種植大棚12月份中5天的日產(chǎn)量y(單位:kg)與該地當(dāng)日的平均氣溫x(單位:℃)的數(shù)據(jù),得到如圖散點(diǎn)圖:
其中A(3,2),B(5,10),C(8,11),D(9,13),E(10,14).
(1)求出y關(guān)于x的線性回歸方程;
(2)若該地12月份某天的平均氣溫為6℃,用(1)中所求的回歸方程預(yù)測(cè)該蘑菇種植大棚當(dāng)日的產(chǎn)量.
附:線性回歸直線方程中,?y=?bx+?a,?b=n∑i=1xiyi-nxyn∑i=1x2i-nx2.?a=y-?bx發(fā)布:2024/12/29 11:30:2組卷:103引用:3難度:0.7 -
2.兩個(gè)線性相關(guān)變量x與y的統(tǒng)計(jì)數(shù)據(jù)如表:
x 9 9.5 10 10.5 11 y 11 10 8 6 5 =?yx+40,則相應(yīng)于點(diǎn)(9,11)的殘差為 .?b發(fā)布:2024/12/29 12:0:2組卷:112引用:8難度:0.7 -
3.某農(nóng)科所對(duì)冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進(jìn)行了分析研究,他們分別記錄了12月1日至12月6日每天晝夜最高、最低的溫度(如圖1),以及實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù)情況(如圖2),得到如下資料:
(1)請(qǐng)畫出發(fā)芽數(shù)y與溫差x的散點(diǎn)圖;
(2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請(qǐng)用相關(guān)系數(shù)說(shuō)明建立模型的合理性;
(3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);?y=?a+?bx
②若12月7日的晝夜溫差為8℃,通過(guò)建立的y關(guān)于x的回歸方程,估計(jì)該實(shí)驗(yàn)室12月7日當(dāng)天100顆種子的發(fā)芽數(shù).
參考數(shù)據(jù):=2051,6∑i=1xi=75,6∑i=1yi=162,6∑i=1xiyi≈4.2,6∑i=1xi2-6x2≈6.5.6∑i=1yi2-6y2
參考公式:
相關(guān)系數(shù):r=(當(dāng)|r|>0.75時(shí),具有較強(qiáng)的相關(guān)關(guān)系).n∑i=1xiyi-nx?y(n∑i=1xi2-nx2)(n∑i=1yi2-ny2)
回歸方程中斜率和截距計(jì)算公式:?y=?a+?bx=?b,n∑i=1xiyi-nx?yn∑i=1xi2-nx2=?ay-?b.x發(fā)布:2024/12/29 12:0:2組卷:181引用:5難度:0.5