已知數(shù)列{an}滿足:a1∈N*,a1≤36,且an+1=2an, an≤18 2an-36, an>18
(n=1,2,…),記集合M={an|n∈N*}.
(Ⅰ)若a1=6,寫出集合M的所有元素;
(Ⅱ)如集合M存在一個元素是3的倍數(shù),證明:M的所有元素都是3的倍數(shù);
(Ⅲ)求集合M的元素個數(shù)的最大值.
2 a n , | a n ≤ 18 |
2 a n - 36 , | a n > 18 |
【考點】數(shù)列遞推式.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1806引用:22難度:0.1
相似題
-
1.設(shè)Sn為數(shù)列{an}的前n項和,若
,5an+1=5an+2,則S5=( ?。?/h2>a1=65發(fā)布:2024/12/29 11:0:2組卷:157引用:4難度:0.7 -
2.設(shè)a,b∈R,數(shù)列{an}滿足a1=a,an+1=an2+b,n∈N*,則( )
發(fā)布:2024/12/29 12:30:1組卷:3181引用:9難度:0.4 -
3.在數(shù)列{an}中,a1=1,an+1=2an+2n.
(1)設(shè)bn=.證明:數(shù)列{bn}是等差數(shù)列;an2n-1
(2)求數(shù)列{an}的通項公式.發(fā)布:2024/12/29 6:30:1組卷:136引用:11難度:0.3
把好題分享給你的好友吧~~