如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx-4(a≠0)與x軸交于點A(-1,0),B(4,0),與y軸交于點C.

(1)求該拋物線的解析式;
(2)直線l為該拋物線的對稱軸,點D與點C關(guān)于直線l對稱,點F為直線AD下方拋物線上一動點,連接FA,F(xiàn)D,求△FAD面積的最大值;
(3)在(2)的條件下,將拋物線y=ax2+bx-4(a≠0)沿射線AD平移42個單位,得到新的拋物線y1,點E為點F的對應(yīng)點,點P為y1的對稱軸上任意一點,在y1上確定一點Q,使得以點D,E,P,Q為頂點的四邊形是平行四邊形,請直接寫出所有符合條件的點Q的坐標(biāo).
2
【考點】二次函數(shù)綜合題.
【答案】(1)y=x2-3x-4;
(2)8;
(3)Q()或Q()或Q().
(2)8;
(3)Q(
5
2
,-
5
4
7
2
,-
25
4
15
2
,-
25
4
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:597引用:3難度:0.3
相似題
-
1.如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=-x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側(cè),B點的坐標(biāo)為(3,0).點P是拋物線上一個動點,且在直線BC的上方.
(1)求這個二次函數(shù)的表達式.
(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)點P運動到什么位置時,四邊形ABPC的面積最大,并求出此時點P的坐標(biāo)和四邊形ABPC的最大面積.發(fā)布:2025/6/13 16:30:1組卷:1114引用:8難度:0.3 -
2.如圖,在平面直角坐標(biāo)系中,直線y=-
x+3與x軸,y軸分別相交于A、B兩點,拋物線y=ax2經(jīng)過AB的中點D.34
(1)直接寫出拋物線解析式;
(2)如圖1,在直線AB上方,y軸右側(cè)的拋物線上是否存在一點M,使S△ABM=,若存在,求出M點坐標(biāo);若不存在,請說明理由.214
(3)如圖2,點C是OB中點,連接CD,點P是線段AB上的動點,將△BCP沿CP翻折,使點B落在點B'處,當(dāng)PB'平行于x軸時,請直接寫出BP的長.發(fā)布:2025/6/13 17:0:1組卷:239引用:1難度:0.1 -
3.如圖,拋物線y=ax2+bx+c交x軸于A(-1,0),B(3,0)兩點,交y軸于點C(0,-3),點P是拋物線第四象限內(nèi)的動點.
(1)求拋物線的解析式;
(2)過點P分別作x軸、y軸的垂線,垂足分別為點D和點E,當(dāng)四邊形PDOE是正方形時,求P的坐標(biāo);
(3)連接AC、BC,過點P作PQ∥AC交線段BC于點Q,連接PA、PB、QA,記△PAQ與△PBQ面積分別為S1,S2,設(shè)S=S1+S2,求S的最大值.發(fā)布:2025/6/13 16:30:1組卷:299引用:1難度:0.3