閱讀材料:如圖,△ABC的周長為l,面積為S,內(nèi)切圓⊙O的半徑為r,探究r與S,l之間的關(guān)系.
解:連接OA、OB、OC.
∵S△AOB=12AB?r,S△OBC=12BC?r,S△OCA=12CA?r,
∴S=12AB?r+12BC?r+12CA?r=12l?r,
∴r=2Sl
解決問題:
(1)利用探究的結(jié)論,計(jì)算邊長分別為5,12,13的三角形內(nèi)切圓半徑.
(2)如圖,若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),且面積為S,各邊長分別為a,b,c,d,試推導(dǎo)四邊形的內(nèi)切圓半徑公式.
(3)若一個n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1,a2,a3,a4,…,an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).
1
2
1
2
1
2
1
2
1
2
1
2
1
2
2
S
l
【考點(diǎn)】圓的綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:88引用:2難度:0.5
相似題
-
1.如圖,矩形ABCD中,AB=13,AD=6.點(diǎn)E是CD上的動點(diǎn),以AE為直徑的⊙O與AB交于點(diǎn)F,過點(diǎn)F作FG⊥BE于點(diǎn)G.
(1)當(dāng)E是CD的中點(diǎn)時:tan∠EAB的值為;
(2)在(1)的條件下,證明:FG是⊙O的切線;
(3)試探究:BE能否與⊙O相切?若能,求出此時BE的長;若不能,請說明理由.發(fā)布:2024/12/23 12:0:2組卷:657引用:5難度:0.4 -
2.在平面直角坐標(biāo)系xOy中,⊙O的半徑為1,P是坐標(biāo)系內(nèi)任意一點(diǎn),點(diǎn)P到⊙O的距離SP的定義如下:若點(diǎn)P與圓心O重合,則SP為⊙O的半徑長;若點(diǎn)P與圓心O不重合,作射線OP交⊙O于點(diǎn)A,則SP為線段AP的長度.
圖1為點(diǎn)P在⊙O外的情形示意圖.
(1)若點(diǎn)B(1,0),C(1,1),,則SB=D(0,13)
(2)若直線y=x+b上存在點(diǎn)M,使得SM=2,求b的取值范圍;
(3)已知點(diǎn)P,Q在x軸上,R為線段PQ上任意一點(diǎn).若線段PQ上存在一點(diǎn)T,滿足T在⊙O內(nèi)且ST≥SR,直接寫出滿足條件的線段PQ長度的最大值.發(fā)布:2024/12/23 11:0:1組卷:619引用:11難度:0.1 -
3.如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥DC,BC=10cm,CD=6cm.在線段BC、CD上有動點(diǎn)F、E,點(diǎn)F以每秒2cm的速度,在線段BC上從點(diǎn)B向點(diǎn)C勻速運(yùn)動;同時點(diǎn)E以每秒1cm的速度,在線段CD上從點(diǎn)C向點(diǎn)D勻速運(yùn)動.當(dāng)點(diǎn)F到達(dá)點(diǎn)C時,點(diǎn)E同時停止運(yùn)動.設(shè)點(diǎn)F運(yùn)動的時間為t(秒).
(1)求AD的長;
(2)設(shè)四邊形BFED的面積為y,求y 關(guān)于t的函數(shù)關(guān)系式,并寫出函數(shù)自變量取值范圍;
(3)點(diǎn)F、E在運(yùn)動過程中,如△CEF與△BDC相似,求線段BF的長.
(4)以BF為半徑的圓B與以DE為半徑的圓D如果相切,直接寫出t的值.發(fā)布:2025/1/21 8:0:1組卷:65引用:2難度:0.5