試卷征集
加入會員
操作視頻

在△ABC中,AB=AC,∠BAC=90°,過點A作BC的垂線AD,垂足為D,E為射線DC上一動點(不與點C重合),連接AE,以點A為中心,將線段AE逆時針旋轉(zhuǎn)90°得到線段AF,連接BF,與直線AD交于點G.
(1)如圖1,當點E在線段CD上時,
①依題意補全圖形;
②求證:點G為BF的中點.
(2)如圖2,當點E在線段DC的延長線上時,用等式表示AE,BE,AG之間的數(shù)量關(guān)系,并證明.

【考點】幾何變換綜合題
【答案】(1)見解答過程;(2)2AE2-4AG2=BE2
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:1313引用:13難度:0.4
相似題
  • 1.將兩個三角形△AOB,△DCB放置在平面直角坐標系中,點O(0,0),點A(0,6),點B(
    6
    3
    0
    ),點C,D分別在邊OB,AB上,且滿足BC=CD=OA.
    (1)如圖①,求點D的坐標.
    (2)以點B為中心,順時針旋轉(zhuǎn)△DCB,得到△FEB,點C,D的對應點分別為點E,F(xiàn).
    (i)如圖②,連接AE,則在旋轉(zhuǎn)過程中,當AE⊥BF時,求線段AE的長;
    (ii)如圖③,連接AF,點M為AF的中點,則在旋轉(zhuǎn)過程中,當點M到線段CD的距離取得最大值時,直接寫出點M的坐標.

    發(fā)布:2025/5/22 11:0:1組卷:712引用:1難度:0.3
  • 2.在綜合與實踐課上,劉老師展示了一個情境,讓同學們進行探究:情境呈現(xiàn):如圖1,等腰直角三角形ABC中,AC=BC,∠ACB=90°,點P為AC上一點,過點P作PQ⊥AB,垂足為Q,連接BP,點D為BP的中點,連接CD,DQ.
    分別過點Q,C作QM⊥AB,CN⊥AB,垂足分別為M,N.
    ∵△ABC和△AQP都是等腰直角三角形,QM⊥AP,CN⊥AB,
    QM
    =
    AM
    =
    PM
    =
    1
    2
    AP
    ,
    CN
    =
    BN
    =
    AN
    =
    1
    2
    AB
    ,∠QMP=∠CND=90°.
    ∵點D是BP的中點,
    BD
    =
    DP
    =
    1
    2
    BP

    DM
    =
    DP
    +
    PM
    =
    1
    2
    BP
    +
    1
    2
    AP
    =
    1
    2
    AB

    ∴DM=CN=AN.
    ∴AM=DN=QM.
    ∴△QMD≌△DNC.
    ∴DQ=DC.
    特殊分析:(1)將△APQ繞點A順時針旋轉(zhuǎn),當點P落在AB上時,如圖2,探究CD與DQ的數(shù)量關(guān)系;小明同學的分析如上:填空:①小明判斷△QMD≌△DNC的依據(jù)是
    (填序號);
    A.SSS
    B.SAS
    C.AAS
    D.ASA
    E.HL
    ②請判斷∠CDQ的度數(shù)為
    ;
    一般研討:(2)若將△APQ繞點A在平面內(nèi)順時針旋轉(zhuǎn),如圖3,CD與DQ的數(shù)量關(guān)系是否發(fā)生變化?若變化,請說明理由;若不變化,請證明;
    拓展延伸:(3)若
    AP
    =
    4
    3
    ,
    BC
    =
    6
    2
    ,在△AQP繞點A旋轉(zhuǎn)的過程中,當∠BAP=60°時,請直接寫出線段DQ的長.

    發(fā)布:2025/5/22 11:30:2組卷:672引用:4難度:0.2
  • 3.在△ABC中,∠ACB=90°,BC=4,AC=3,CD是AB邊上的中線,點E是BC邊上的一個動點,連接DE,將△BDE沿直線DE翻折得到△FDE.
    (1)如圖1,線段DF與線段BC相交于點G,當點G是BC邊的中點時,求BE的長;
    (2)如圖2,當點E與點C重合時,線段EF與線段AB相交于點P,求DP的長;
    (3)如圖3,線段EF與線段CD相交于點M,是否存在點E,使得△DFM為直角三角形?若存在,請直接寫出BE的長;若不存在,請說明理由.

    發(fā)布:2025/5/22 11:30:2組卷:962引用:1難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正