如圖1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一點(diǎn),且DE=CE,連接BD,CD.

(1)試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系,并說明理由;
(2)如圖2,若將△DCE繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數(shù)量關(guān)系,請直接寫出結(jié)論;
②你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.
【考點(diǎn)】幾何變換綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 13:0:1組卷:1647引用:14難度:0.3
相似題
-
1.閱讀下面的材料,并解決問題:
(1)如圖1,等邊△ABC內(nèi)有一點(diǎn)P,若點(diǎn)P到頂點(diǎn)A、B、C的距離分別是3、4、5,求∠APB的度數(shù).由于PA、PB、PC不在一個三角形中,為了解決本題我們可以將△ABP繞頂點(diǎn)A旋轉(zhuǎn)到△ACP′處,此時△ACP≌.這樣,就可以利用全等三角形知識,將三條線段的長度轉(zhuǎn)化到一個三角形中從而求出∠APB的度數(shù);(求∠APB的度數(shù))
(2)請你利用第(1)題解答的思想方法,解答下面的問題:如圖2,在△ABC中,∠CAB=90°,AB=AC,E、F為BC上的點(diǎn)且∠EAF=45°,求證:EF2=BE2+FC2.發(fā)布:2025/6/9 5:30:2組卷:189引用:2難度:0.2 -
2.(1)如圖1,在平面直角坐標(biāo)系中,將直角三角形的直角頂點(diǎn)放在點(diǎn)P(2,2)處,若A(0,2),則B的坐標(biāo)為 ;
(2)將直角三角形繞點(diǎn)P逆時針旋轉(zhuǎn),如圖2,兩直角邊與坐標(biāo)軸分別交于點(diǎn)AB,求OA+OB的值;
(3)將直角三角形繞點(diǎn)P逆時針旋轉(zhuǎn),如圖3,兩直角邊所在的直線與坐標(biāo)軸交于A,B兩點(diǎn),探究OB與OA的數(shù)量關(guān)系.發(fā)布:2025/6/9 5:0:1組卷:40引用:1難度:0.2 -
3.如圖1,在△ABC中,AE⊥BC于點(diǎn)E,AE=BE,D是AE上的一點(diǎn),且DE=CE,連接BD,CD.
(1)試判斷BD與AC的位置關(guān)系是:;數(shù)量關(guān)系是:;
(2)如圖2,若將△DCE繞點(diǎn)E旋轉(zhuǎn)一定的角度后,試判斷BD與AC的位置關(guān)系和數(shù)量關(guān)系是否發(fā)生變化,并說明理由;
(3)如圖3,若將(2)中的等腰直角三角形都換成等邊三角形,其他條件不變.
①試猜想BD與AC的數(shù)量關(guān)系為:;
②你能求出BD與AC的夾角度數(shù)嗎?如果能,請直接寫出夾角度數(shù);如果不能,請說明理由.發(fā)布:2025/6/9 6:30:1組卷:724引用:2難度:0.3