已知f(x)=12ax2-(a2+a+2)x+(2a+2)lnx+b(a≥0).
(1)討論f(x)的單調(diào)性;
(2)若a>3且a2+a+1<b<2a2-2a+2,證明:f(x)恰好有三個(gè)零點(diǎn).
1
2
【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.
【答案】(1)當(dāng)a=0時(shí),函數(shù)f(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
當(dāng)a=1時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
當(dāng)0<a<1時(shí),函數(shù)f(x)在(0,a+1),(,+∞)上單調(diào)遞增,在(a+1,)上單調(diào)遞減,
當(dāng)a>1時(shí),函數(shù)f(x)在(0,),(a+1,+∞)上單調(diào)遞增,在(,a+1)上單調(diào)遞減.
(2)證明詳情見解答.
當(dāng)a=1時(shí),函數(shù)f(x)在(0,+∞)上單調(diào)遞增,
當(dāng)0<a<1時(shí),函數(shù)f(x)在(0,a+1),(
2
a
2
a
當(dāng)a>1時(shí),函數(shù)f(x)在(0,
2
a
2
a
(2)證明詳情見解答.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:31引用:2難度:0.6
相似題
-
1.已知函數(shù)f(x)=x3-2kx2+x-3在R上不單調(diào),則k的取值范圍是 ;
發(fā)布:2024/12/29 13:0:1組卷:236引用:3難度:0.8 -
2.在R上可導(dǎo)的函數(shù)f(x)的圖象如圖示,f′(x)為函數(shù)f(x)的導(dǎo)數(shù),則關(guān)于x的不等式x?f′(x)<0的解集為( ?。?/h2>
發(fā)布:2024/12/29 13:0:1組卷:265引用:7難度:0.9 -
3.已知函數(shù)f(x)=ax2+x-xlnx(a∈R)
(Ⅰ)若函數(shù)f(x)在(0,+∞)上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),證明:.x1?x2>e2發(fā)布:2024/12/29 13:30:1組卷:142引用:2難度:0.2