試卷征集
加入會(huì)員
操作視頻

【問(wèn)題情境】
綜合與實(shí)踐課上,老師讓同學(xué)們以“正方形紙片折疊的方式,探索tan22.5°及tan15°”為主題開(kāi)展數(shù)學(xué)活動(dòng),下面是同學(xué)們的折紙過(guò)程.【操作過(guò)程】
(1)如圖1,先將正方形紙片沿對(duì)角線折疊,折痕為BD.將點(diǎn)C翻折到BD上的點(diǎn)F處,且使折痕過(guò)點(diǎn)B,則∠EBC=∠EBF=22.5°,則tan22.5°=
2
-1
2
-1

(2)為構(gòu)造15°,同學(xué)們積極動(dòng)腦并進(jìn)行如下操作:如圖2,將正方形紙片翻折,使得點(diǎn)A與點(diǎn)D、點(diǎn)B與點(diǎn)C重合,折痕為GH.展開(kāi)后,將點(diǎn)C翻折到GH上的點(diǎn)R處,且使折痕過(guò)點(diǎn)B,連接BR.再將點(diǎn)A翻折到GH上的點(diǎn)R處,折痕為BK.根據(jù)以上操作請(qǐng)你求出tan15°的值;
【探索發(fā)現(xiàn)】
(3)如圖3,在圖2的基礎(chǔ)上,同學(xué)們通過(guò)其他折疊方式在CD上找到一點(diǎn)P,使得∠PBC=15°,連接KP,發(fā)現(xiàn)S△ABK與S△DKP存在固定不變的數(shù)量關(guān)系,請(qǐng)寫(xiě)出你的猜想并驗(yàn)證.

【考點(diǎn)】四邊形綜合題
【答案】
2
-1
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/29 8:0:10組卷:108引用:1難度:0.1
相似題
  • 1.如圖①,矩形ABCD中,AB=12,AD=25,延長(zhǎng)CB至E,使BE=9,連接AE,將△ABE沿AB翻折使點(diǎn)E落在BC上的點(diǎn)F處,連接DF.△ABE從點(diǎn)B出發(fā),沿線段BC以每秒3個(gè)單位的速度平移得到△A′B′E′,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE又從點(diǎn)F開(kāi)始沿射線FD方向以每秒5個(gè)單位的速度平移,當(dāng)點(diǎn)E′到達(dá)點(diǎn)D時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
    (1)線段DF的長(zhǎng)度為
     
    ;當(dāng)f=
     
    秒時(shí),點(diǎn)B′落在CD上;
    (2)在△ABE平移的過(guò)程中,記△A′B′E′與△AFD互相重疊部分的面積為S,請(qǐng)直接寫(xiě)出面積S與運(yùn)動(dòng)時(shí)
    間t之間的函數(shù)關(guān)系式,并寫(xiě)出自變量t的取值范圍;
    (3)如圖②,當(dāng)點(diǎn)E′到達(dá)點(diǎn)F時(shí),△ABE從點(diǎn)F開(kāi)始沿射線FD方向以每秒5個(gè)單位的速度平移時(shí),設(shè)A′B′
    交射線FD于點(diǎn)M,交線段AD于點(diǎn)N,是否存在某一時(shí)刻t,使得△DMN為等腰三角形?若存在,請(qǐng)求出相應(yīng)的t值;若不存在,請(qǐng)說(shuō)明理由.
     

    發(fā)布:2025/1/13 8:0:2組卷:119引用:1難度:0.1
  • 2.已知:矩形ABCD中,∠MAN的一邊分別與射線DB、射線CB交于點(diǎn)E、M,另一邊分別與射線DB、射線DC交于點(diǎn)F、N,且∠MAN=∠BDA.
    (1)若AB=AD,(如圖1)求證:
    2
    DF=MC.
    (2)(如圖2)若AB=4,AD=8,tan∠BAM=
    1
    4
    ,連接FM并延長(zhǎng)交射線AB于點(diǎn)K,求線段BK的長(zhǎng).

    發(fā)布:2025/1/13 8:0:2組卷:16引用:0難度:0.9
  • 3.已知:如圖1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,cot∠ABC=
    1
    2
    ,點(diǎn)E在AD邊上,且AE=3ED,EF∥AB,EF交BC于點(diǎn)F,點(diǎn)M、N分別在射線FE和線段CD上.

    (1)求線段CF的長(zhǎng);
    (2)如圖2,當(dāng)點(diǎn)M在線段FE上,且AM⊥MN,設(shè)FM?cos∠EFC=x,CN=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
    (3)如果△AMN為等腰直角三角形,求線段FM的長(zhǎng).

    發(fā)布:2025/1/21 8:0:1組卷:95引用:3難度:0.2
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正