天府新區(qū)某校數(shù)學(xué)活動小組在一次活動中,對一個(gè)數(shù)學(xué)問題作如下探究:
(1)問題發(fā)現(xiàn):如圖1,在等邊△ABC中,點(diǎn)P是邊BC上任意一點(diǎn),連接AP,以AP為邊作等邊△APQ,連接CQ.求證:BP=CQ;
(2)變式探究:如圖2,在等腰△ABC中,AB=BC,點(diǎn)P是邊BC上任意一點(diǎn),以AP為腰作等腰△APQ,使AP=PQ,∠APQ=∠ABC,連接CQ.判斷∠ABC和∠ACQ的數(shù)量關(guān)系,并說明理由;
(3)解決問題:如圖3,在正方形ADBC中,點(diǎn)P是邊BC上一點(diǎn),以AP為邊作正方形APEF,Q是正方形APEF的中心,連接CQ.若正方形APEF的邊長為6,CQ=22,求正方形ADBC的邊長.

2
【考點(diǎn)】四邊形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:2449引用:13難度:0.2
相似題
-
1.如圖,四邊形ABCD、EBGF都是正方形.
(1)如圖1,若AB=4,EC=,求FC的長;17
(2)如圖2,正方形EBGF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn),使點(diǎn)G正好落在EC上,猜想AE、EB、EC之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,在(2)條件下,∠BCE=22.5°,EC=2,點(diǎn)M為直線BC上一動點(diǎn),連接EM,過點(diǎn)M作MN⊥EC,垂足為點(diǎn)N,直接寫出EM+MN的最小值.發(fā)布:2025/5/24 19:0:1組卷:233引用:2難度:0.5 -
2.如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=
,把Rt△ABC沿AB翻折得到Rt△ABD,過點(diǎn)B作BE⊥BC,交AD于點(diǎn)E,點(diǎn)F是線段BE上一點(diǎn),且tan∠ADF=3.則下列結(jié)論中:①AE=BE;②△BED∽△ABC;③BD2=AD?DE;④AF=32.正確的有 .(把所有正確答案的序號都填上)2133發(fā)布:2025/5/24 19:30:1組卷:526引用:3難度:0.3 -
3.在矩形ABCD中,AB=6,BC=8,
【問題發(fā)現(xiàn)】
(1)如圖1,E為邊DC上的一個(gè)點(diǎn),連接BE,過點(diǎn)C作BE的垂線交AD于點(diǎn)F,試猜想BE與CF的數(shù)量關(guān)系并說明理由.
【類比探究】
(2)如圖2,G為邊AB上的一個(gè)點(diǎn),E為邊CD延長線上的一個(gè)點(diǎn),連接GE交AD于點(diǎn)H,過點(diǎn)C作GE的垂線交AD于點(diǎn)F,試猜想GE與CF的數(shù)量關(guān)系并說明理由.
【拓展延伸】
(3)如圖3,點(diǎn)E從點(diǎn)B出發(fā)沿射線BC運(yùn)動,連接AE,過點(diǎn)B作AE的垂線交射線CD于點(diǎn)F,過點(diǎn)E作BF的平行線,過點(diǎn)F作BC的平行線,兩平行線交于點(diǎn)H,連接DH,在點(diǎn)E的運(yùn)動的路程中,線段DH的長度是否存在最小值?若存在,求出線段DH長度的最小值;若不存在,請說明理由.發(fā)布:2025/5/24 20:0:2組卷:309引用:3難度:0.2