【問題呈現(xiàn)】
△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,連接AD,BE,探究AD,BE的位置關(guān)系.
【問題探究】
(1)如圖1,當(dāng)m=1時(shí),直接寫出AD,BE的位置關(guān)系:AD⊥BEAD⊥BE.
(2)如圖2,當(dāng)m≠1時(shí),(1)中的結(jié)論是否成立?若成立,給出證明;若不成立,說明理由.
【拓展應(yīng)用】
(3)當(dāng)m=3,AB=47,DE=4時(shí),將△CDE繞點(diǎn)C旋轉(zhuǎn),使A,D,E三點(diǎn)恰好在同一直線上,求BE的長.

3
7
【考點(diǎn)】幾何變換綜合題.
【答案】AD⊥BE
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/14 8:0:9組卷:3777引用:18難度:0.3
相似題
-
1.如圖,△ABC為邊長是4
的等邊三角形,四邊形DEFG是邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖①的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C、E、F在同一條直線上,△ABC從圖①的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動(dòng),當(dāng)點(diǎn)B與點(diǎn)E重合時(shí)停止運(yùn)動(dòng),設(shè)△ABC的運(yùn)動(dòng)時(shí)間為t秒.3
(1)當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),求此時(shí)t的值;
(2)在整個(gè)運(yùn)動(dòng)過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式;
(3)如圖②,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線BM交AE于點(diǎn)M,將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形?若存在,求線段AH的長度;若不存在,請說明理由.發(fā)布:2025/6/24 11:30:1組卷:111引用:1難度:0.3 -
2.將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°得到線段AC,繼續(xù)旋轉(zhuǎn)α(0°<α<120°)得到線段AD,連接CD.
(1)連接BD,
①如圖1,若α=80°,則∠BDC的度數(shù)為 ;
②在第二次旋轉(zhuǎn)過程中,請?zhí)骄俊螧DC的大小是否改變.若不變,求出∠BDC的度數(shù);若改變,請說明理由.
(2)如圖2,以AB為斜邊作直角三角形ABE,使得∠B=∠ACD,連接CE,DE.若∠CED=90°,求α的值.發(fā)布:2025/6/23 16:0:1組卷:633引用:8難度:0.1 -
3.如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點(diǎn)P從點(diǎn)A出發(fā),沿折線AB-BC以每秒5個(gè)單位長度的速度向點(diǎn)C運(yùn)動(dòng),同時(shí)點(diǎn)D從點(diǎn)C出發(fā),沿CA以每秒2個(gè)單位長度的速度向點(diǎn)A運(yùn)動(dòng),點(diǎn)P到達(dá)點(diǎn)C時(shí),點(diǎn)P、D同時(shí)停止運(yùn)動(dòng),當(dāng)點(diǎn)P不與點(diǎn)A、C重合時(shí),作點(diǎn)P關(guān)于直線AC的對稱點(diǎn)Q,連結(jié)PQ交AC于點(diǎn)E,連結(jié)DP、DQ,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)D與點(diǎn)E重合時(shí),求t的值.
(2)用含t的代數(shù)式表示線段CE的長.
(3)當(dāng)△PDQ為直角三角形時(shí),求△PDQ與△ABC重疊部分的面積.發(fā)布:2025/6/25 5:0:1組卷:45引用:1難度:0.1