在求解代數(shù)式2a2-12a+22的最值(最大值或最小值)時(shí),老師給出以下解法:解:原式=2(a2-6a)+22=2(a2-6a+9)-18+22=2(a-3)2+4,∵無(wú)論a取何值,2(a-3)2≥0,∴代數(shù)式2(a-3)2+4≥4,即當(dāng)a=3時(shí),代數(shù)式2a2-12a+22有最小值為4.仿照上述思路,則代數(shù)式-3a2+6a-8的最值為( )
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2025/6/6 10:0:1組卷:472引用:3難度:0.7
相似題
-
1.閱讀材料:把形如ax2+bx+c的二次三項(xiàng)式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆寫,即a2±2ab+b2=(a±b)2.請(qǐng)根據(jù)閱讀材料解決下列問題:
(1)填空:a2-4a+4=.
(2)若a2+2a+b2-6b+10=0,求a+b的值.
(3)若a、b、c分別是△ABC的三邊,且a2+4b2+c2-2ab-6b-2c+4=0,試判斷△ABC的形狀,并說(shuō)明理由.發(fā)布:2025/6/6 23:0:1組卷:124引用:2難度:0.5 -
2.我們知道,對(duì)于任意一個(gè)實(shí)數(shù)a,a2具有非負(fù)性,即“a2≥0”.這個(gè)結(jié)論在數(shù)學(xué)中非常有用.很多情況下我們需要將代數(shù)式配成完全平方式,然后利用“a2≥0”來(lái)解決問題.
例如:x2+4x+5=x2+4x+4+1=(x+2)2+1
∵(x+2)2≥0
∴(x+2)2+1≥1
∴x2+4x+5≥1
(1)填空:x2-4x+6=(x )2+;
(2)請(qǐng)用作差法比較x2-1與6x-12的大小,并寫出解答過(guò)程;
(3)填空:-x2+2x+3的最大值為 .發(fā)布:2025/6/6 22:30:1組卷:826引用:7難度:0.7 -
3.閱讀理解:我們一起來(lái)探究代數(shù)式x2-4x-5的值,
探究一:當(dāng)x=1時(shí),x2-4x-5的值為 ;當(dāng)x=-3時(shí),x2-4x-5的值為 ,可見,代數(shù)式的值因x的取值不同而變化.
探究二:把代數(shù)式x2-4x-5進(jìn)行變形,如:x2-4x-5=x2-4x+4-9=(x-2)2-9,可以看出代數(shù)式x2-4x-5的最小值為 ,這時(shí)相應(yīng)的x=.
根據(jù)上述探究,請(qǐng)解答:
(1)求代數(shù)式-x2-8x+17的最大值,并寫出相應(yīng)x的值.
(2)把(1)中代數(shù)式記為A,代數(shù)式9y2+12y+37記為B,是否存在,x,y的值,使得A與B的值相等?若能,請(qǐng)求出此時(shí)x?y的值,若不能,請(qǐng)說(shuō)明理由.發(fā)布:2025/6/7 1:30:1組卷:287引用:3難度:0.5