試卷征集
加入會(huì)員
操作視頻

上數(shù)學(xué)課時(shí),王老師在講完乘法公式(a±b)2=a2±2ab+b2的多種運(yùn)用后,要求同學(xué)們運(yùn)用所學(xué)知識(shí)解答:求代數(shù)式x2+4x+5的最小值?同學(xué)們經(jīng)過(guò)交流、討論,最后總結(jié)出如下解答方法:
解:x2+4x+5=x2+4x+4+1=(x+2)2+1
∵(x+2)2≥0,
∴當(dāng)x=-2時(shí),(x+2)2的值最小,最小值是0,
∴(x+2)2+1≥1
∴當(dāng)(x+2)2=0時(shí),(x+2)2+1的值最小,最小值是1,
∴x2+4x+5的最小值是1.
請(qǐng)你根據(jù)上述方法,解答下列各題
(1)知識(shí)再現(xiàn):當(dāng)x=
3
3
時(shí),代數(shù)式x2-6x+12的最小值是
3
3
;
(2)知識(shí)運(yùn)用:若y=-x2+2x-3,當(dāng)x=
1
1
時(shí),y有最
值(填“大”或“小”),這個(gè)值是
-2
-2
;
(3)知識(shí)拓展:若-x2+3x+y+5=0,求y+x的最小值.

【答案】3;3;1;大;-2
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:6338引用:21難度:0.3
相似題
  • 1.閱讀下列題目的解題過(guò)程:
    已知a、b、c為△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問(wèn):(1)上述解題過(guò)程,從哪一步開(kāi)始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):
    ;
    (2)錯(cuò)誤的原因?yàn)椋?!--BA-->
    ;
    (3)本題正確的結(jié)論為:

    發(fā)布:2024/12/23 18:0:1組卷:2493引用:25難度:0.6
  • 2.我們常利用數(shù)形結(jié)合思想探索了整式乘法的一些法則和公式.類似地,我們可以借助一個(gè)棱長(zhǎng)為a的大正方體進(jìn)行以下探索:
    菁優(yōu)網(wǎng)
    (1)在大正方體一角截去一個(gè)棱長(zhǎng)為b(b<a)的小正方體,如圖1所示,則得到的幾何體的體積為

    (2)將圖1中的幾何體分割成三個(gè)長(zhǎng)方體①、②、③,如圖2所示,因?yàn)锽C=a,AB=a-b,CF=b,所以長(zhǎng)方體①的體積為ab(a-b),類似地,長(zhǎng)方體②的體積為
    ,長(zhǎng)方體③的體積為
    ;(結(jié)果不需要化簡(jiǎn))
    (3)將表示長(zhǎng)方體①、②、③的體積的式子相加,并將得到的多項(xiàng)式分解因式,結(jié)果為

    (4)用不同的方法表示圖1中幾何體的體積,可以得到的等式為

    (5)已知a-b=4,ab=2,求a3-b3的值.

    發(fā)布:2024/12/23 14:0:1組卷:275引用:3難度:0.4
  • 3.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:382引用:7難度:0.6
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正