閱讀下列材料:
“a2≥0”這個(gè)結(jié)論在數(shù)學(xué)中非常有用,有時(shí)我們需要將代數(shù)式配成完全平方式.例如:
x2+4x+5=x2+4x+4+1=(x+2)2+1,
∵(x+2)2≥0,
∴(x+2)2+1≥1.
∴x2+4x+5≥1.
試?yán)谩芭浞椒ā苯鉀Q下列問(wèn)題:
(1)已知x2-4x+y2+6y+13=0,求x+y的值;
(2)比較代數(shù)式x2-1與2x-3的大小.
【考點(diǎn)】配方法的應(yīng)用;非負(fù)數(shù)的性質(zhì):偶次方.
【答案】(1)x+y=-1;
(2)x2-1>2x-3.
(2)x2-1>2x-3.
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:219引用:1難度:0.5
相似題
-
1.明明學(xué)完“配方法”后,總結(jié)出如下內(nèi)容.其中正確的個(gè)數(shù)有( ?。﹤€(gè).
①配方法的基本思想是通過(guò)變形,將方程的左邊配成一個(gè)含有未知數(shù)的一次式的完全平方(右邊是一個(gè)非負(fù)常數(shù)),從而轉(zhuǎn)化為用直接開(kāi)平方法求解.
②利用配方法,可以求出代數(shù)式x2-5x+7的最小值.
③用配方法解一般形式的一元二次方程ax2+bx+c=0(a≠0,b2-4ac≥0),能得到一元二次方程的求根公式.
④用配方法解一元二次方程,配方時(shí),方程兩邊加上的數(shù)是:一次項(xiàng)系數(shù)一半的平方.發(fā)布:2025/6/9 2:30:1組卷:71引用:1難度:0.5 -
2.已知a、b、c滿足a+b=5,c2=ab+b-9,則ab-c=.
發(fā)布:2025/6/9 3:0:1組卷:238引用:3難度:0.7 -
3.已知a、b、c滿足a2+2b=7,b2-2c=-1,c2-6a=-17,則(b-c)2=.
發(fā)布:2025/6/9 3:30:1組卷:183引用:1難度:0.6