設(shè)N為正整數(shù),區(qū)間Ik=[ak,ak+1](其中ak∈R,k=1,2,…,N)同時(shí)滿足下列兩個(gè)條件:
①對(duì)任意x∈[0,100],存在k使得x∈Ik;
②對(duì)任意k∈{1,2,…,N},存在x∈[0,100],使得x?Ii(其中i=1,2,…,k-1,k+1,…,N).
(Ⅰ)判斷ak(k=1,2,…,N)能否等于k-1或k2-1;(結(jié)論不需要證明).
(Ⅱ)求N的最小值;
(Ⅲ)研究N是否存在最大值,若存在,求出N的最大值;若不存在,說(shuō)明理由.
k
2
-
1
【考點(diǎn)】數(shù)列與函數(shù)的綜合.
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/11 3:0:1組卷:124引用:2難度:0.3
相似題
-
1.已知點(diǎn)A
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點(diǎn),等比數(shù)列an的前n項(xiàng)和為f(n)-c,數(shù)列bn(bn>0)的首項(xiàng)為c,且前n項(xiàng)和Sn滿足(1,13)(n≥2).Sn-Sn-1=Sn+Sn-1
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式.
(2)若數(shù)列的前n項(xiàng)和為Tn,問(wèn)滿足Tn{1bnbn+1}的最小整數(shù)是多少?>10002011
(3)若,求數(shù)列Cn的前n項(xiàng)和Pn.Cn=-2bnan發(fā)布:2025/1/12 8:0:1組卷:35引用:3難度:0.1 -
2.已知一組2n(n∈N*)個(gè)數(shù)據(jù):a1,a2,…,a2n,滿足:a1≤a2≤…≤a2n,平均值為M,中位數(shù)為N,方差為s2,則( ?。?/h2>
發(fā)布:2024/12/29 7:30:2組卷:54引用:4難度:0.5 -
3.已知公比為q的正項(xiàng)等比數(shù)列{an},其首項(xiàng)a1>1,前n項(xiàng)和為Sn,前n項(xiàng)積為Tn,且函數(shù)f(x)=x(x+a1)(x+a2)?(x+a9)在點(diǎn)(0,0)處切線斜率為1,則( ?。?/h2>
發(fā)布:2024/12/29 10:30:1組卷:30引用:3難度:0.5
把好題分享給你的好友吧~~